• Title/Summary/Keyword: Bacillus sp. S-6

Search Result 201, Processing Time 0.022 seconds

Construction of Expression Vector of Bacillus sp. SSA3 Strain (Bacillus sp. SSA3 균주의 Expression Vector 개발)

  • 조윤래;김종규;권대준
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.637-641
    • /
    • 1992
  • The promoter regions from chromosomal DNA of Bacillus sp. SSA3 which is responsible for fermentation of Korean traditional soy sauce, were cloned for construction of expression vector of Bacills sp. SSA3. Recombinant plasmids were constructed by insertion of HindIIl-cleaved Bacillus sp. SSA3 chromosomal DNA fragments in front of the CAT gene of pGR71 plasmid and B-galactosidase gene of pUC18 plasmid. 6 recombinant plasmids were isolated from chloramphenicol resistant E. coli JM109 clones. All these plasmids were found to have promoter activity in Bacills sp. SSA3 and E. coli JM109. When these 6 clones of Bacills sp. SSA3 were cultivated in LB agar medium supplemented with 10% NaCI. fused CAT gene expression of 4 clones was significantly decreased in common. But the others were poorly inhibited.

  • PDF

Isolation and characterization of cellulolytic bacteria, Bacillus sp. EFL1, EFL2, and EFP3 from the mixed forest (혼효림으로부터 셀룰로오스분해 박테리아 분리 및 효소학적 특성규명)

  • Park, Hwa Rang;Oh, Ki-Cheol;Kim, Bong-Gyu
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • This study was conducted to isolate the cellulolytic bacteria able to grow on LB- Carboxymethyl cellulose (CMC) agar trypan blue medium from the mixed forest and Larix leptolepis stands. Three bacterial strains with high activity against both CMC and xylan were isolated. Both API kit test and 16S rRNA gene sequence analysis revealed that the three different isolates belong to the gene Bacillus. Therefore, the isolates named as Bacillus sp. EFL1, Bacillus sp. EFL2, and Bacillus sp. EFP3. The optimum growth temperature of Bacillus sp. EFL1, EFL2, and EFP3 were $37^{\circ}C$. The optimum temperature for CMCase and xylanase from Bacillus sp. EFL1 were $50^{\circ}C$. The optimum pH of Bacillus sp. EFL1 xylanase was pH 5.0 but the optimum pH of CMCase from Bacillus sp. EFL1 was pH 6.0. The optimum temperature of CMCase and xylanase from Bacillus sp. EFL2 was $60^{\circ}C$, respectively. The optimum pH of CMCase of Bacillus sp. EFL2 was 5.0, whereas xylanase showed high activity at pH 3.0-9.0. The optimum temperature for CMCase and xylanase of Bacillus sp. EFP3 was $50^{\circ}C$. The optimum pH for CMCase and xylanse was 5.0 and 4.0, respectively. CMCases from Bacillus sp. EFL1, EFL2, and EFP3 were thermally unstable. Although xylanase from Bacillus sp. EFL1 and EFP3 showed to be thermally unstable, xylanase from Bacillus sp. EFL2 showed to be thermally stable. Therefore, Bacillus sp. EFL2 has great potential for animal feed, biofuels, and food industry applications.

Isolation of Bacillus sp. SW29-2 and Its Antifungal Activity against Colletotrichum coccodes (Bacillus sp. SW29-2의 분리 및 Colletotrichum coccodes에 대한 항진균 활성)

  • Han, Yeong-Hwan
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.688-693
    • /
    • 2017
  • Antifungal bacterium against Colletotrichum coccodes causing black dot disease of potatoes and anthracnose of tomatoes was isolated from sewage sludge. The isolate showed a 99% sequence homology of partial 16S rRNA of Bacillus methylotrophicus CBMB205 and Bacillus amyloliquefaciens subsp. plantarum FZB42. The isolate was identified as Bacillus sp. SW29-2, using the neighbor-joining phylogenetic tree, BlastN sequence analysis, and morphological and cultural characteristics. Bacillus sp. SW29-2 is an aerobic, Gram-positive, endospore-forming bacterium, of which the morphological and physiological characteristics were the same as those of type strain B. lichniformis CBMB205, except for the cell growth of over 4% NaCl. The cell growth of the temperature and the initial pH of the medium was shown at $18-47^{\circ}C$ (opt. ca. $38^{\circ}C$) and 3-9 (opt. ca. 6.0), respectively. The inhibition size (diameter) of Bacillus sp. SW29-2 against four strains of C. coccodes ranged from 23 to 29 mm. Also, the isolate showed antifungal activity against penicillium rot-causing Penicillium expansum in apples. Thus far, any report on the antifungal activity of Baciilus spp. against C. coccodes has not been found. These results suggest that the Bacillus sp. SW29-2 isolate could be used as a possible biocontrol agent against C. coccodes, and further applied to other plant pathogenic fungi.

Utilization the Tofu-Residue for Production of the Bacteriocin 1. Cultural Conditions of Bacillus sp. for Amylase (박테리오신의 생산을 위한 두부비지의 이용 1. 두부비지에서 분리한 Bacillus sp.에 의한 Amylase의 생산조건)

  • 이선희;이명숙
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.3
    • /
    • pp.271-276
    • /
    • 2000
  • A amylase producing bacteria were isolated from tofu residue and identified as Bacillus sp. according to the morphological and biochemical properties, which were named Bacillus sp. GM7330 and Bacillus sp. GM7312. The cultural condition for the production of amylase was showed on 5% tofu residue added 3% glucose and 0.15% yeast extract. And incubated during 72 hrs at 30。C, Bacillus sp. GM7330 and Bacillus sp. GM7312 were producing amylase of 488 units and 341 units.

  • PDF

Dominant-species Variation of Soil Microbes by Temperate Change (온도변화에 기인한 토양미생물 우점종의 변화에 관한 연구)

  • Park, Kap-Joo;Lee, Byeong-Chol;Lee, Jae-Seok;Park, Chan-Sun;Cho, Myung-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.52-60
    • /
    • 2011
  • Today, the weather is changing continually, due to the progress of global warming. As the weather changes, the habitats of different organisms will change as well. It cannot be predicted whether or not the weather will change with each passing day. In particular, the biological distribution of the areas climate change affects constitutes a major factor in determining the natural state of indigenous plants; additionally, plants are constantly exposed to rhizospheric microorganisms, which are bound to be sensitive to these changes. Interest has grown in the relationship between plants and rhizopheric microorganisms. As a result of this interest we elected to research and experiment further. We researched the dominant changes that occur between plants and rhizospheric organisms due to global warming. First, we used temperature as a variable. We employed four different temperatures and four different sites: room temperature ($27^{\circ}C$), $+2^{\circ}C$, $+4^{\circ}C$, and $+6^{\circ}C$. The four different sites we used were populated by the following species: Pinus deniflora, Pinus koraiensis, Quercus acutissima, and Alnus japonica. We counted colonies of these plants and divided them. Then, using 16S rRNA analysis we identified the microorganisms. In conclusion, we identified the following genera, which were as follows: 10 species of Bacillus, 2 Enterobacter species, 4 Pseudomonas species, 1 Arthrobacter species, 1 Chryseobacterium species, and 1 Rhodococcus species. Among these genera, the dominant species in Pinus deniflora was discovered in the same genus, but a different species dominated at $33^{\circ}C$. Additionally, that of Pinus koraiensis changed in both genus and species which changed into the Chryseobacrterium genus from the Bacilus genus at $33^{\circ}C$.

A Thermostable Protease Produced from Bacillus sp. JE 375 Isolated from Korean Soil (한국의 토양으로부터 내열성 단백질 분해효소를 생산하는 Bacillus sp. JE 375의 선별)

  • Kim, Ji-Eun;Bai, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.419-426
    • /
    • 2006
  • A thermophilic microorganism, strain JE 375, which produces a thermostable protease, was isolated from soil and compost in Korea. This gram-positive, rod-shaped, catalase positive, motility positive, and hemolysis ${\beta}$ containing organism was implicated in glucose fermentation, mannitol fermentation, xylose oxidation, aerobic activity and spore formation. The color of the colony was yellowish white. The temperature range for growth at pH 6.5 was between 55 and $70^{\circ}C$, with an optimum growth temperature of $65^{\circ}C$. This result confirmed the strain JE 375 as a thermophilic microorganism. The enzyme was produced aerobically at $65^{\circ}C$ during 20 hr in a medium (pH 6.5) containing 1% trypton. 1% maltose, 0.5% yeast extract and 1% NaCl. The 16S rDNA of strain JE 375 had 97.6% sequence similarity with the 16S rDNA of Bacillus caldoxyloyticus. On the basis of biochemical and physiological properties and phylogenetic analysis, we named the isolated strain as Bacillus sp. JE 375. The thermostable protease from Bacillus sp. JE 375 had been partially purified and characterized. The molecular weight of the enzyme was deduced from SDS-PAGE and gel chromatography as 55 kDa and its optimal temperature was $60^{\circ}C$. The enzyme showed its highest activity at pH 7.5 and was stable from pH 7.0 to 8.0.

Purification of $\beta$-Galactosidase from Alkalophilic Bacillus sp. YS-309 (호알카리성 Bacillus sp. YS-309로부터 $\beta$-Galactosidase의 정제)

  • 유주현;윤성식
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.587-592
    • /
    • 1989
  • A strain of alkalophilic Bacillus sp. YS-309 capable of producing large amount of $\beta$-galactosidase has been isolated from soil sample. Intracellular $\beta$-galactosidase was purified 6.9 folds by procedures including ammonium sulfate precipitation, DEAE-cellulose chromatography, gel-filtration, DEAE-Sephadex A-50 chromatography with over-all yield of 17.8%. The molecular weight of native enzyme was 205, 000 by HPLC, and SDS-polyacrylamide gel electrophoresis showed that the enzyme consisted of 4 identical subunits with a molecular weight of 56, 000.

  • PDF

Intrageneric Protoplast Fusion between Alkalophilic Bacillus sp. F204 and Bacillus sp. K 17 (호알칼리성 Bacillus sp. F204와 Bacillus sp. K 17의 원형질체 융합)

  • 성낙계;노종수;박석규;정영철
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.4
    • /
    • pp.275-281
    • /
    • 1988
  • To develop cellulase and xylanase-producing strain by protoplast fusion, alkalophilic Bacillus sp. F204 and K17 were treated with NTG(N-methyl-N'-nitro-N-nitrosoguanidine) and isolated anti-biotics resistant strains of S20 (Km$^r$ , Cm$^r$) and G70 (Str$^r$). The frequency of protoplast formation was about 95% when cells of mid-log phase were treated with 200$\mu\textrm{g}$/ml Iysozyme at 37$^{\circ}C$ for 30-45 minutes. Under addition of 0.4-0.5M sodium succinate, 0.5% casamino acid, 1.5% polyvinylpyrrolidone, 25mM MgC1$_2$ and 50mM CaC1$_2$ to the regeneration medium, the regeneration frequency of Bacillus sp. F204 and K17 was 24.9% and 26.2%, respectively. The fusion frequency was 6.6$\times$10$^{-6}$ in the presence of 30% polyethylene glycol 6000 containing 50mM $Ca^{++}$ at 45$^{\circ}C$ for 5 minutes. Cellulase complex and xylanase activities of fusant were compared with parental strains.

  • PDF

Conditions for the Pigment Production by Bacillus sp. CS-17 and Antibacterial Activity of Pigment Concentrated Extracts (Bacillus sp. CS-17의 색소 생성조건 및 색소 농축액의 항균특성)

  • Son, Dong-Hwa;Kwon, Oh-Jin;Choi, Ung-Kyu;Chung, Yung-Gun
    • Applied Biological Chemistry
    • /
    • v.41 no.3
    • /
    • pp.213-218
    • /
    • 1998
  • A bacterium with potent activity of pigment production and protease was isolated and identified as being Bacillus sp. CS-17. Cell growth, protease activity and pigment production of the strain reached to its maximum point after 24 hrs, 48 hrs, 72 hrs, respectively. The best pigment producing ability of Bacillus sp. CS-17 was shown on basal medium for pigment production added 1.0% soybean. The high effcient conditions for pigment production was obtained at culture of pH 8.5, $37^{\circ}C$ and 72 hours. Among the tested 5 gram positive strains and 6 gram negative strains, weak antibacterial activity of pigment concentrated extracts was appeared against growth of B. subtilis, P. aeruginosa, S. typhimurium, E. aerogenes, B. cereus, A. hydrophila.

  • PDF

Isolation and Identification of Probiotic Bacillus strain Forming Amine Oxidase from Traditional Fermented Soybean Paste (재래식 된장으로부터 아민 산화 효소를 생산하는 프로바이오틱 바실러스균의 분리 동정)

  • Lim, Eun-Seo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1535-1544
    • /
    • 2020
  • The primary objective of this study was to isolate and identify amine oxidase-producing probiotic Bacillus strains from traditional fermented soybean paste. Biogenic amines (BA)-forming bacteria isolated from the samples were identified as Bacillus sp. TS09, Bacillus licheniformis TS17, Bacillus subtilis TS19, Bacillus cereus TS23, Bacillus sp. TS30, Bacillus megaterium TS31, B. subtilis TS44, Bacillus coagulans TS46 and Bacillus amyloliquefaciens TS59. Meanwhile, B. subtilis TS04 and TS50 isolated from the same samples exhibited good probiotic properties, including the tolerance to artificial gastric juice and bile salts, the adhesion to intestinal epithelial cells, and the production of bacteriocin(s) active against BA-forming bacteria (Bacillus sp. TS30 and B. subtilis TS44). In addition, the amine oxidase produced by B. subtilis TS04 and TS50 significantly decreased the formation of BA, especially cadaverine, putrescine, and tyramine, therefore, these strains could be considered good potential probiotic candidates to prevent or reduce BA accumulation in food products.