• Title/Summary/Keyword: Bacillus megaterium KSM B-404

Search Result 2, Processing Time 0.014 seconds

Purification and Characterization of a Maltopentaose-producing Amylase from Bacillus megaterium KSM B-404. (Bacillus megaterium KSM B-404으로부터 생산되는 Maltopentaose생성 Amylase의 정제 및 특성)

  • 박제원;김병주;이재우;김영배
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.352-358
    • /
    • 2002
  • An amylase that hydrolyzes starch into maltopentaose as a main product was found in the culture supernatant of a strain of Bacillus megaterium KSM B-404 isolated from local soil. The enzyme was purified 129-fold by ammonium sulfate precipitation, DEAE-Toyopearl and Superdex 75 HR 10/30 column using a FPLC system. The molecular weight of the amylase was determined as about 68 kDa by using SDS-PAGE. Optimum pH and temperature of amylase were found to be $50^{\circ}C$ and pH 6.0~7.0, respectively. The enzyme was stable up to $60^{\circ}C$ by addition of $Ca^{2+}$ and its pH stability was in the range of 6.0~10.0. The activity of enzyme was inhibited by $Cu^{2+}$ $Hg^{2+}$ , and $Fe^{3+}$ and maintained by $Ca^{2+}$ and $Mg^{2+}$ . EDTA and pCMB also showed inhibitory effect to the enzyme. TLC and HPLC analysis of the products of the enzyme reaction showed the presence of maltopentaose(52%), maltotriose (25%), maltose (11%), glucose, and maltotetraose in the starch hydrolysates.

A Novel Maltopentaose-Producing Amylase as a Bread Antistaling Agent

  • Auh, Joong-Hyuck;Lee, Su-Yong;Yoo, Seung-Seok;Son, Hyun-Ju;Lee, Jae-Woo;Lee, Sung-Joon;Kim, Young-Bae;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.681-684
    • /
    • 2005
  • A maltopentaose-producing amylase (G5-amylase) from Bacillus megaterium KSM B-404 was applied to retard bread retrogradation. Retrogradation rates were determined by differential scanning calorimetry. Gel permeation chromatography determined changes in maltooligosaccharide composition and the molecular weight profiles of carbohydrate tractions. The baking process produced maltopentaose and maltotriose by the hydrolysis of starch molecules into small units. Amylose and amylopectin degradation as well as maltooligosaccharides produced by the enzyme were likely responsible for retarding starch retrogradation. Overall, addition of G5-amylase reduced the starch retrogradation rate, and was as effective as Novamyl(R), a commercial enzyme.