• Title/Summary/Keyword: Bacillus isolates

Search Result 407, Processing Time 0.021 seconds

In Vitro Antagonistic Effects of Bacilli Isolates against Four Soilborne Plant Pathogenic Fungi

  • Kim, Wan-Gyu;Weon, Hang-Yeon;Lee, Sang-Yeob
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.52-57
    • /
    • 2008
  • Twenty isolates of Bacillus spp. obtained from livestock manure composts and cotton-waste composts were tested for in vitro antagonistic effects against soilborne plant pathogenic fungi, Fusarium oxysporum, Phytophthora capsici, Rhizoctonia solani AG-4, and Sclerotinia sclerotiorum. Seven isolates of Bacillus spp. had antagonistic effects on mycelial growth of all the isolates of F. oxysporum tested. The bacterial isolate RM43 was the most effective to inhibit the mycelial growth of the fungal isolates. Twelve isolates of Bacillus spp. had antagonistic effects on mycelial growth of all the isolates of P. capsici tested. The bacterial isolates M34 and M47 were very effective to inhibit the mycelial growth of the fungal isolates. Thirteen isolates of Bacillus spp. had antagonistic effects on mycelial growth of all the isolates of R. solani AG-4 tested. The bacterial isolates M27 and M75 were very effective to inhibit the mycelial growth of the fungal isolates. Fourteen isolates of Bacillus sp. had antagonistic effects on mycelial growth of all the isolates of S. sclerotiorum tested. The bacterial isolates M49 and M75 were very effective to inhibit the mycelial growth of the fungal isolates. The antagonistic effects of most Bacillus spp. isolates against the isolates of the four fungi differed depending on the fungal species and the isolates of each fungus. The bacterial isolates M27 and M75 were the most effective to inhibit the mycelial growth of all four fungi.

Characterization of Endogeneous Plasmids from Two Bacillus Isolates (Bacillus 속 분리균 2종의 내재형 Plasmids 특성분석)

  • 윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.364-369
    • /
    • 1999
  • In order to obtain the suitable plasmids for constructing plasmid vectors of Bacillus species, endogeneous plasmid DNAs were screended from thermo-tolerant soil bacteria. Based on agarose gel electrophoresis patterns of the isolated plasmid DNAs, two strains harboring small-size plasmids were selected. The isolated were identified to belong to the genus Bacillus on the basis of their morphological and biochemical properties, and named Bacillus sp. 3-3 and 77-8, respectively. The restriction endonuclease maps were determined for four plasmids including two plasmids from each Bacillus isolates. It is interesting that Bacillus sp. 3-3 and 77-8 have an identical plasmid according to the restriction maps. The three kinds of hybrid plasmids constructed by introducing each plasmid of two isolates into a Escherichia coli plasmid vector. pUCCm18 containing chloramplenicol resistance gene active in Bacillus strains, could be replicated in B. subtilis and B. licheniformis. These plasmids are very stable in B. subtilis, suggesting that the Bacillus plasmids identified in this work would be useful for development of new cloning vectors for Bacillus strains.

  • PDF

In Vitro Antagonistic Characteristics of Bacilli Isolates against Trichoderma spp. and Three Species of Mushrooms

  • Kim, Wan-Gyu;Weon, Hang-Yeon;Seok, Soon-Ja;Lee, Kang-Hyo
    • Mycobiology
    • /
    • v.36 no.4
    • /
    • pp.266-269
    • /
    • 2008
  • Twenty isolates of Bacillus species obtained from livestock manure composts and cotton-waste composts were tested for their antagonistic effects in vitro against three green mold pathogens of mushrooms (Trichoderma harzianum, T. koningii, and T. viridescens). However, there exists a possibility Bacillus species may have antagonistic effects against mushrooms themselves, and thus the same 20 isolates were tested in vitro against three species of mushrooms (Flammulina velutipes, Lentinus edodes, and Pleurotus ostreatus). Of the 20 Bacillus species isolates tested, two inhibited mycelial growth of T. harzianum, seven that of T. koningii, and eight that of T. viridescens. Importantly, the bacterial isolates M27 and RM29 strongly inhibited mycelial growth of all the Trichoderma spp. isolates tested. The isolate M27 was subsequently identified as the most effective in inhibiting mycelial growth of all the Trichoderma species. Interesting results of the effect Bacillus isolates had upon the mushroom species followed. It was found that most Bacillus isolates except 5T33 at least somewhat inhibited mycelial growth of the three mushroom species or some of the mushrooms. Furhermore, the antagonistic effects of the bacterial isolates against the three species of mushrooms varied depending on the mushroom species, suggesting a role for mushroom type in the mechanism of inhibition. The bacterial isolates M27 and RM29 were identified as having the most antagonistic activity, inhibiting mycelial growth of all the Trichoderma spp. as well as mycelial growth of the three species of mushrooms. These results suggest that the bacterial isolates and their antagonistic effects on green mold pathogens should be further studied for their practical use for biological control of green mold in the growing room of the mushrooms.

Characterization of Zinc-Solubilizing Bacillus Isolates and their Potential to Influence Zinc Assimilation in Soybean Seeds

  • Sharma, Sushil K.;Sharma, Mahaveer P.;Ramesh, Aketi;Joshi, Om P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.352-359
    • /
    • 2012
  • One hundred thirty-four putative Bacillus isolates were recovered from soybean rhizosphere soils of Nimar region to select effective zinc solubilizers for increased assimilation of zinc (Zn) in soybean seeds. These isolates were screened in vitro for zinc-solubilization ability on Tris-minimal agar medium supplemented separately with 0.1% zinc in the form of zinc oxide, zinc phosphate, and zinc carbonate. Of all, 9 isolates and a reference Bacillus cereus ATCC 13061 were characterized and identified as Bacillus species based on Gram-positive reaction, endospore-forming cells, and the presence of iso-$C_{15:0}$ and anteiso-$C_{15:0}$ as predominant fatty acids. On plate assay, two isolates KHBD-6 and KHBAR-1 showed a greater diameter of solubilization halo and colony diameter on all the three zinc compounds. The isolates KHBD-6, KHBAR-1, BDSD-2-2C, and KHTH-4-1 and the reference strain ATCC 13061 had higher soluble zinc concentration in liquid medium supplemented with zinc phosphate and zinc carbonate compounds as compared with the other isolates and uninoculated control. Evaluation under microcosm conditions showed that inoculation of isolates KHBD-6 (57.34 ${\mu}g/g$), KHBAR-1 (55.67 ${\mu}g/g$), and strain ATCC 13061 (53.10 ${\mu}g/g$) significantly increased the Zn concentration in soybean seeds as compared with the other isolates and uninoculated control (47.14 ${\mu}g/g$). This study suggests the occurrence of zinc-solubilizing Bacillus in soils of Nimar region and isolates KHBD-6 and KHBAR-1 were found to be promising zinc solubilizers for increased assimilation of Zn in soybean seeds.

Isolation of Novel Non-Toxic Bacillus thuringiensis from Soil Samples in Korea (한국 토양으로부터 새로운 무독성 Bacillus thuringiensis 균주의 분리)

  • 노종열;박현우;김호산;진병래;강석권
    • Korean journal of applied entomology
    • /
    • v.34 no.4
    • /
    • pp.373-377
    • /
    • 1995
  • Four Bacillus thuringiensis isolates obtained from soil samples in Korea produce parasporal inclusions non-toxic to 10 insect species of three orders, Lepidopera, Diptera and Coleoptera. These four isolates are named NTB-1, NTB-2, NTB-3 and NTB-4, respectively. The morphology of parasporal inclusions of four isolates observed by phase contrast- and scanning electron microscope was all ovoid. Characterization of four non-toxic B. thuringiensis isolates was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and restriction endonuclease analysis. The results showed that parasporal inclusion proteins and total plasmid DNA profiles of four isolates are different from other known non-toxic B. thuringiensis strains', suggesting that four isolates are novel.

  • PDF

국내 식물시료에서 분리한 Bacillus thuringiensis 균주의 다양성

  • Park, Seung-Hwan;Koo, Bon-Tag;Shin, Byung-Sik;Choi, Soo-Keun;Jeong, Young-Mee;Pan, Jae-Gu;Kim, Jeong-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.159-165
    • /
    • 1997
  • We collected 3,237 plant samples, mainly leaves of various trees, from many provinces in Korea and a total of 1,925 Bacillus thuringiensis isolates were obtained and characterized. The isolates were characterized in terms of crystal morphology, PAGE pattern of the toxin proteins, plasmids pattern, biochemical characteristics, and bioassay. The microscopic observation showed that 49.1% of the isolates have bipyramidal shape crystals, 7.1% of spherical shape crystals, 1.4% of rhomboidal shape crystals, and others have small or amorphous inclusions. The insecticidal activities of the spore-crystal mixtures of isolates were tested against Plutella xylostella, Bombyx mori, Culex pipiens, and Agelastica coerulea. Bioassay showed that 51.3% of the isolates were shown to be active; lepidopteran-specific (44.8%), dipteran-specific(4.9%) and coleopteran-specific (1.6%). The remainder(48.8%) did not show any activity against the insects we tested. Interestingly though, some of these non-active isolates were shown to have bipyramidal crystals. By serotyping 22 isolates of our collection, we found that there are various kind of subspecies such as aizawai, amagiens, canadensis, darmstadiensis, galleriae, finitimus, kurstaki, morrisoni and neoleonensis, and three isolates have been classified into a new serotype, H49, and one of them, the type strain, named subsp. muju. From this study it was found that phylloplane is a good source for the isolation of Bacillius thuringiensis, and Bacillus thuringiensis is distributed widely in Korea.

  • PDF

Antifungal Activities of Bacillus thuringiensis Isolates on Barley and Cucumber Powdery Mildews

  • Choi, Gyung-Ja;Kim, Jin-Cheol;Jang, Kyoung-Soo;Lee, Dong-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2071-2075
    • /
    • 2007
  • Fourteen Bacillus thuringiensis isolates having both insecticidal activity and in vitro antifungal activity were selected and tested for in vivo antifungal activity against tomato late blight, wheat leaf rust, tomato gray mold, and barley powdery mildew in growth chambers. All the isolates represented more than 70% disease control efficacy against at least one of four plant diseases. Specifically, 12 isolates exhibited strong control activity against barley powdery mildew. Under glasshouse conditions, four (50-02, 52-08, 52-16, and 52-18) of the isolates also displayed potent control efficacy against cucumber powdery mildew. To our knowledge, this is the first report of B. thuringiensis isolates that have disease control efficacy against powdery mildew of barley and cucumber as well as insecticidal activity.

Detection of Virulence-Associated Genes in Clinical Isolates of Bacillus anthracis by Multiplex PCR and DNA Probes

  • Kumar, Sanjay;Tuteja, Urmil
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1475-1481
    • /
    • 2009
  • Anthrax is a zoonotic disease caused by Bacillus anthracis, and well recognized as a potential agent for bioterrorism. B. anthracis can be identified by detecting the virulence factors genes located on two plasmids, pXO1 and pXO2. The aim of the present study was to determine the presence of virulence genes in 27 isolates of B. anthracis isolated from clinical and environmental samples. For this purpose, multiplex PCR and DNA probes were designed to detect protective antigen (pag), edema factor (cya), lethal factor (lef), and capsule (cap) genes. Our results indicated that all the isolates contained all the above virulence genes, suggesting that the isolates were virulent. To the best our knowledge, this is the first study about the determination of virulence marker genes in clinical and environmental isolates of B. anthracis using multiplex PCR and DNA probes in India. We suggest that the above methods can be useful in specific identification of virulent B. anthracis in clinical and environmental samples.

Whole genome sequence analyses of thermotolerant Bacillus sp. isolates from food

  • Phornphan Sornchuer;Kritsakorn Saninjuk;Pholawat Tingpej
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.35.1-35.12
    • /
    • 2023
  • The Bacillus cereus group, also known as B. cereus sensu lato (B. cereus s.l.), is composed of various Bacillus species, some of which can cause diarrheal or emetic food poisoning. Several emerging highly heat-resistant Bacillus species have been identified, these include B. thermoamylovorans, B. sporothermodurans, and B. cytotoxicus NVH 391-98. Herein, we performed whole genome analysis of two thermotolerant Bacillus sp. isolates, Bacillus sp. B48 and Bacillus sp. B140, from an omelet with acacia leaves and fried rice, respectively. Phylogenomic analysis suggested that Bacillus sp. B48 and Bacillus sp. B140 are closely related to B. cereus and B. thuringiensis, respectively. Whole genome alignment of Bacillus sp. B48, Bacillus sp. B140, mesophilic strain B. cereus ATCC14579, and thermophilic strain B. cytotoxicus NVH 391-98 using the Mauve program revealed the presence of numerous homologous regions including genes responsible for heat shock in the dnaK gene cluster. However, the presence of a DUF4253 domain-containing protein was observed only in the genome of B. cereus ATCC14579 while the intracellular protease PfpI family was present only in the chromosome of B. cytotoxicus NVH 391-98. In addition, prophage Clp protease-like proteins were found in the genomes of both Bacillus sp. B48 and Bacillus sp. B140 but not in the genome of B. cereus ATCC14579. The genomic profiles of Bacillus sp. isolates were identified by using whole genome analysis especially those relating to heat-responsive gene clusters. The findings presented in this study lay the foundations for subsequent studies to reveal further insights into the molecular mechanisms of Bacillus species in terms of heat resistance mechanisms.

Bacillus cereus Clinical Isolates : Characteristics, Enterotoxin Production and Antimicrobial Susceptibility (임상 검체에서 분리된 Bacillus cereus의 성상, 장독소 생성 및 항균제 감수성)

  • Kim, Shin-Moo;Kim, Eun-Cheol;So, Hyang-Ah;Lee, Gyu-Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • Biochemical characteristics, enterotoxin production and antimicrobial susceptibility were determined for 30 strains of Bacillus cereus isolated from stool specimens of diarrhea patients at an university hospital in Chulabuk-do province. Positive rate for VP reaction and citrate utilization were lower, (33 % and 40 % respectively) while the rates of acid production from mannitol, arabinose, and xylose were higher (17 %, 13 % and 3 % respectively) than those obtained by other investigators. The enterotoxin gene was detected in 18 of 30 isolates (60 %) by PCR, and the toxin was detected from all of the toxin gene-positive isolates by RPLA test. The agar dilution test showed that all isolates were resistant to penicillin G and 73 % were to cephalothin, but all were susceptible to ciprofloxacin, clindamycin, erythromycin, fusidic acid, gentamicin, rifampin, teracycline and vancomycin. We conclude that B. cereus isolates producing acid from mannitol, arabinose and xylose exist, that PCR can be used to detect enterotoxin genes rapidly and accurately, and that this organism is susceptible to various antimicrobial agents though not penicillin G and cephalothin.

  • PDF