• 제목/요약/키워드: Bacillus drentensis

검색결과 4건 처리시간 0.018초

Bacillus drentensis sp. 사균과 polysulfone으로 이루어진 미생물담체를 이용한 수용액 내 벤젠 제거 (Removal of Benzene in Solution by using the Bio-carrier with Dead Bacillus drentensis sp. and Polysulfone)

  • 박상희;이민희
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권1호
    • /
    • pp.46-56
    • /
    • 2013
  • Laboratory scale experiments to remove benzene in solution by using the bio-carrier composed of dead biomass have been performed. The immobilized bio-carrier with dead Bacillus drentensis sp. and polysulfone was manufactured as the biosorbent. Batch sorption experiments were performed with bio-carriers having various quantities of biomass and then, their removal efficiencies and uptake capacities were calculated. From results of batch experiments, 98.0% of the initial benzene (1 mg/L) in 1 liter of solution was removed by using 40 g of immobilized bio-carrier containing 5% biomass within 1 hour and the biosorption reaction reached in equilibrium within 2 hours. Benzene removal efficiency slightly increased (99.0 to $99.4%{\pm}0.05$) as the temperature increased from 15 to $35^{\circ}C$, suggesting that the temperature rarely affects on the removal efficiency of the bio-carrier. The removal efficiency changed under the different initial benzene concentration in solution and benzene removal efficiency of the bio-carrier increased with the increase of the initial benzene concentration (0.001 to 10 mg/L). More than 99.0% of benzene was removed from solution when the initial benzene concentration ranged from 1 to 10 mg/L. From results of fitting process for batch experimental data to Langmuir and Freundlich isotherms, the removal isotherms of benzene were more well fitted to Freundlich model ($r^2$=0.9242) rather than Langmuir model ($r^2$=0.7453). From the column experiment, the benzene removal efficiency maintained over 99.0% until 420 pore volumes of benzene solution (initial benzene concentration: 1 mg/L) were injected in the column packed with bio-carriers, investigating that the immobilized carrier containing Bacillus drentensis sp. and polysulfone is the outstanding biosorbent to remove benzene in solution.

Equilibrium and Kinetic Studies of the Biosorption of Dissolved Metals on Bacillus drentensis Immobilized in Biocarrier Beads

  • Seo, Hanna;Lee, Minhee;Wang, Sookyun
    • Environmental Engineering Research
    • /
    • 제18권1호
    • /
    • pp.45-53
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out to quantify the biosorption of Pb(II) and Cu(II) by the biocarrier beads. The parameters obtained from the thermodynamic analysis revealed that the biosorption of Pb(II) and Cu(II) by biomass immobilized in biocarrier beads was a spontaneous, irreversible, and physically-occurring adsorption phenomenon. Comparing batch experimental data to various adsorption isotherms confirmed that Koble-Corrigan and Langmuir isotherms well represented the biosorption equilibrium and the system likely occurred through monolayer sorption onto a homogeneous surface. The maximum adsorption capacities of the biocarrier beads for Pb(II) and Cu(II) were calculated as 0.3332 and 0.5598 mg/g, respectively. For the entire biosorption process, pseudo-second-order and Ritchie second-order kinetic models were observed to provide better descriptions for the biosorption kinetic data. Application of the intra-particle diffusion model showed that the intraparticle diffusion was not the rate-limiting step for the biosorption phenomena. Overall, the dead biomass immobilized in polysulfone biocarrier beads effectively removed metal ions and could be applied as a biosorbent in wastewater treatment.

미생물 담체를 이용한 납 제거기작 모의를 위한 수학적 모델의 개발 (Development of a Mathematical Model for Simulating Removal Mechanisms of Heavy Metals using Biocarrier Beads)

  • 서한나;이민희;왕수균
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권4호
    • /
    • pp.8-18
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out and a mathematical model was developed to quantify the biosorption of Pb(II) by the biocarrier beads. A series of mass balance equations for representing mass transfer of metal sorbents in biocarrier beads and surrounding solution were established. Major model parameters such as external mass transfer coefficient and maximum sorption capacity, etc. were determined from pseudo-first-order kinetic models and Langmuir isotherm model based on kinetic and equilibrium experimental measurements. The model simulation displays reasonable representations of experimental data and implied that the proposed model can be applied to quantitative analysis on biosorption mechanisms by porous granular beads. The simulation results also confirms that the biosorption of heavy metal by the biocarrier beads largely depended on surface adsorption.

질산으로 표면처리한 대나무 활성탄을 첨가한 폴리술폰 담체의 세슘제거 효율 규명 (The Cesium Removal Using a Polysulfone Carrier Containing Nitric Acid-treated Bamboo Charcoal)

  • ;김선희;탁현지;김경태;이민희
    • 자원환경지질
    • /
    • 제53권5호
    • /
    • pp.529-542
    • /
    • 2020
  • 질산으로 표면 처리한 대나무 활성탄을 소량 첨가한 구형의 폴리술폰 담체(직경 3 - 5 mm)를 제조한 후, 세슘(Cesium: Cs) 오염수를 대상으로 다양한 실내 실험을 수행하여 담체의 세슘 흡착 특성과 Cs 제거효율을 규명하였다. 배치실험 결과, 질산처리한 대나무 활성탄 5%를 첨가하여 제조한 폴리술폰 담체(P-5NBC)는 수 시간 내에 흡착평형에 도달하였고, 1시간 흡착시간 동안 57.8%의 Cs 제거효율을 나타내었다. 흡착시간이 24시간인 경우에는 오염수의 온도와 pH가 비교적 넓은 범위에서도 P-5NBC의 Cs 제거효율이 69%이상을 유지하여, 다양한 수환경 조건에서 Cs 제거를 위해 적용이 가능할 것으로 판단되었다. 토양과 지하수에 서식하는 대표 미생물종인 Pseudomonas fluorescens와 Bacillus drentensis를 배양하여 P-5NBC 표면에 도포한 경우, 미생물을 도포하지 않은 기존 P-5NBC보다 Cs 제거효율은 각각 19%와 18% 증가하였다. P-5NBC의 평균 Cs 탈착율은 16% 이하를 나타내어, Cs가 폴리술폰 담체에 포함된 질산처리한 대나무 활성탄에 안정적으로 결합하고 있었다. 두 종류의 미생물로 도포한 P-5NBC로 충진하여 연속 칼럼실험을 수행한 결과, 100 공극체적량을 처리하는 동안 Cs 제거효율은 80%이상을 유지하였으며, 이러한 결과는 14.7 g의 P-5NBC 만으로(담체 내 순수 대나무 활성탄량: 0.75 g) 7.2 L의 오염수 (오염수 초기 Cs 농도: 1 mg/L; 처리수 Cs 농도: < 0.2 mg/L)를 성공적으로 처리하였음을 의미한다. 1시간 동안 반응시킨 Cs 흡착 배치실험 결과를 대표적인 Langmuir 흡착등온선에 도시한 결과, P-5NBC의 최대 Cs 흡착농도(qm: mg/g)값은 60.9 mg/g으로, 기존 선행 연구들에서 사용한 다른 흡착제들보다 높았다. 본 연구를 통하여 소량의 P-5NBC 구형 담체를 이용하여 다양한 수환경에서 Cs를 성공적으로 제거할 수 있을 것으로 기대한다.