• Title/Summary/Keyword: BaO

Search Result 2,872, Processing Time 0.021 seconds

Evaluation of Heavy Metal Contamination in Streams within Samsanjeil and Sambong Cu Mining Area (삼산제일.삼봉 동광산 주변 수계의 중금속 오염도 평가)

  • Kim, Soon-Oh;Jung, Young-Il;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.171-187
    • /
    • 2006
  • The status of heavy metal contamination was investigated using chemical analyses of stream waters and sediments obtained from Samsanjeil and Sambong Cu mining area in Goseong-gun, Gyeongsangnam-do. In addition, the degree and the environmental risk of heavy metal contamination in stream sediments was assessed through pollution index (Pl) and danger index (DI) based on total digestion by aqua regia and fractionation of heavy metal contaminants by sequential extraction, respectively. Not only the degree of heavy metal contamination was significantly higher in Samsanjeil area than in Sambong area, but its environmental risk was also revealed much more serious in Samsanjeil area than in Sambong area. The differences in status and level of contamination and environmental risk between both two mining areas may be attributed to existence of contamination source and geology. Acid mine drainage is continuously discharged and flows into the stream in Samsanjeil mining area, and it makes the heavy metal contamination in the stream more deteriorated than in Sambong mining area in which acid mine drainage is not produced. In addition, the geology of Samsanjeil mining area is mainly comprised of andesitic rocks including a small amount of calcite and having lower pH buffering capacity fer acid mine drainage, and it is likely that the heavy metal contamination cannot be naturally attenuated in streams. On the contrary, the main geology of Sambong mining area consists of pyroclastic sedimentary Goseong formation containing a high content of carbonates, particularly calcite, and it seems that these carbonates of high pH buffering capacity prevent the heavy metal contamination from proceeding downstream in stream within that area.

Characterization of Chitin Deacetylase Produced from Mucor rouxii (Mucor rouxii가 생산한 Chitin deacetylase의 특성)

  • SOHN Heung-Sik;PARK Seong-Min;SON Byung-Yil;CHOI Hyeon-Mee;LEE Keun-Tai
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.121-126
    • /
    • 1999
  • In order to degrade chitin by enzymatic hydrolysis, it is required from screening highly active deacetylase. To this end, we examined three fungal strains and it turned out that Mucor rouxii produced highly active deacetylase, this enzyme exhibited the highest enzymatic activity against colloidal chitin. The conditions for growing Mucor rouxii are as follows; the effective carbon source, nitrogen source, adequate initial pH, temperature and incubation time were $2\%$ glucose, $1.33\%$ yeast extract, $0.66\%$ pepton, 4.5, $25{\pm}2^{\circ}C$ and 48hr, respectively. The optimum pH and temperature for purified enzyme activity were 5.5 and $40^{\circ}C$, respectively. The purified enzyme was stable at pH ranging from 4.5 to 5.5. However, the enzyme activity was decreased to less than $50\%$ at pH blow 45 and above 7.5. At temperatures above $50^{\circ}C$, the enzyme activity was decreased remarkably. The enzyme was inhibited by LiC1, $HgCl_2$, and $BaCl_2$, but stimulated by $CaCl_2$ and $ZnC1_2$, The activity of purified enzyme was increased by L-cysteine and 2-mercaptoethanol, while decreased by O-phenanthroline, p-CMB, EDTA, and iodoacetate. The $K_m$ and the $V_{max}$ value of purified enzyme were $1.2\%$ and 59.5 U/mg, respectively. The deacetylation activity of purified enzyme was not detected at optimal reaction condition when chitin particle suspension was used.

  • PDF