• 제목/요약/키워드: BSCCO(2201)

검색결과 44건 처리시간 0.023초

BSCCO:2212-2223 박막의 엔탈피와 엔트로피 변화 (Transformation of the enthalpy and the entropy in BSCCO:2212-2223)

  • 천민우;박노봉;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.589-590
    • /
    • 2005
  • BSCCO:2212-2223 thin films were fabricated by using the ion beam sputter with a evaporation method at various substrate temperatures, $T_{sub}$, and ozone gas pressures, $pO_3$. The correlation diagrams of the BSCCO phases with Tsub and $pO_3$ are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 as well as Bi2212 phases come out as stable phases depending on Tsub and $pO_3$. From these results, the thermodynamic evaluation of ${\Delta}H$ and ${\Delta}S$, which are related with Gibbs' free energy change for single Bi2212 or Bi2223 phase, was performed.

  • PDF

Epitaxial Growth of BSCCO Thin film Fabricated by Layer-by-layer Sputtering

  • Yang, Sung-Ho;Park, Yong-Pil;Lee, Hee-Kab
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.212-217
    • /
    • 2000
  • Bi$_2$Sr$_2$CuO$_{x}$(Bi-2201) thin films have been fabricated by atomic layer-by-layer deposition using ion beam sputtering(IBS) process. During the deposition, 14 wt%-ozone/oxygen mixture gas of typical pressure of 5.0$\times$10$^{-5}$ Torr is supplied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal that a buffer layer with compositions different from Bi-2201 is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.n.

  • PDF

IBS법으로 제작한 BSCCO 박막의 상안정 영역 (BSCCO Thin Films Fabricated by ion Beam Sputtering Method)

  • 양승호;양동복;박용필
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.538-541
    • /
    • 2003
  • BSCCO superconducting thin films have been fabricated by co-deposition using IBS(Ion Beam Sputtering) method. Despite setting the composition of thin film Bi2212 or Bi2223, in both cases, Bi2201, Bi2212 and Bi2223 phase were appeared. It was confirmed the obtained field of stabilizing phase was represented in the diagonal direction of the right below end in the Arrhenius plot of temperature of the substrate and PO$_3$, and it was distributed in the rezone. The XRD peak of the generated film continuously changed according to the substrate temperature.

  • PDF

Thermodynamics for Formation of Each Stable Single Phase in BSCCO Thin Films

  • Yang, Sung-Ho;Park, Yong-Pil;Kim, Gwi-Yeol
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.104-105
    • /
    • 2000
  • High quality BSCCO thin films have been fabricated by means of an ion beam sputtering at various substrate temperatures, T$_{sub}$, and ozone gas pressures, PO$_3$. The correlation diagrams of the BSCCO phases appeared against T$_{sub}$ and PO$_3$are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 phases as well as Bi2212 one come out as stable phases depending on T$_{sub}$ and PO$_3$. From these results, the thermodynamic evaluations of ΔH and ΔS which are related with Gibbs'free energy change for single Bi2212 or Bi2223 phase are performed.ormed.i2212 or Bi2223 phase are performed.

  • PDF

공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석 (Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition)

  • 안인순;천민우;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_{2}O_{3}$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

고온초전도 BSCCO 2223상 형성시 나타나는 여러 가지 이차상들이 선재의 임계전류에 미치는 영향(토요일)

  • 박성창;김철진;유재무;고재웅;김영국
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2003년도 춘계학술연구발표회
    • /
    • pp.24-24
    • /
    • 2003
  • 고온초전도 BSCCO 2223 ((Bi, Pb)₂Sr₂Ca₂Cu₃O/sub x/) 선재의 특성을 향상시키기 위해서는 반복적인 인발 및 압연과정을 통한 texturing향상, BSCCO 2223입자의 배향성 증대, 피복재내 초전도체의 충진율(밀도)향상, 이차상의 부피분율 감소등이 이루어져야 한다. 최적 열처리 조건을 통하여 열처리 시에 형성되는 이차상인 (Bi,Pb)₂Sr₂CuO/sub y/ (2201, amorphous phase)를 조절하면서, (Ca,Sr)₂CuO₃ (2/1 AEC), (Ca,Sr)/sub 14/Cu/sub 24/O/sub 41/ (14/24 AEC)와 같은 이차상들의 부피분율 및 크기를 감소시켜야만 한다. 본 실험에서는 BSCCO 2223 선재의 특성을 향상시킬수 있는 최적의 열처리 조건 확립 및 기계적 공정시 나타나는 여러 가지 문제점을 개선하여 높은 임계전류를 가지는 선재의 특성을 분석하고자 하였다. 최종적으로 제조된 선재는 2223상 결정이 피복재(Ag)와 평행하게 길게 성장하며, AEC상의 크기와 부피분율이 감소할수록 더 높은 임계전류특성을 나타내었다(I/sub c/~70A, J/sub c/~42,000 A/㎠). 또한 이 선재에서 나타나는 여러 가지 이차상들을 분석하기 위하여 XRD, SEM, EDS 분석을 행하였다.

  • PDF

공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석 (Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition)

  • 안인순;천민우;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 730$^{\circ}C$ and decreases linearly with temperature over 730$^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Thermodynamics for Formation of Each Stable Single Phase in BSCCO Thin Films

  • Yang, Sung-Ho;Park, Yong-Pil;Kim, Gwi-Yeol
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.104-107
    • /
    • 2000
  • High quality BSCCO thin films have been fabricated by means of an ion beam sputtering at various substrate temperatures, T$\_$sub/, and ozone gas pressures, PO$_3$. The correlation diagrams of the BSCCO Phases appeared against T$\_$sub/ and PO$_3$ are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 phases as well as Bi2212 one come out as stable phases depending on T$\_$sub/ and PO$_3$. From these results, the thermodynamic evaluations of ΔH and ΔS which are related with Gibbs' free energy change for single Bi2212 or Bi2223 phase are performed.

  • PDF

BSCCO 2223선재의 임계전류밀도에 영향을 미치는 단계별 열처리의 효과 (The effect of step heat treatment in the critical current density of BSCCO 2223 tapes)

  • 박성창;유재무;고재웅;김영국;김철진
    • Progress in Superconductivity
    • /
    • 제4권1호
    • /
    • pp.90-93
    • /
    • 2002
  • The sintering process of BSCCO 2223 tapes is a complex process that is very sensitive to parameters, such as temperature, oxygen partial pressure, heating and cooling rate and holding time. During the first heat treatment, 2212 phase of precursor powder is partially transformed into 2223 phase and some residual secondary phases, such as $(Bi,Pb)_2$$Sr_2$CuO/sub y/(2201), $(Ca,Sr)_2$CuO/sub y/(2/1AEC), (Ca,Sr)/sub 14/Cu/sub 24/O/sub 41/(14/24 AEC) etc. The secondary phases are difficult to be removed from the BSCCO 2223 matrix on the heat treatment. These secondary phases degrade the critical current density. In order to minimize the amount and size of alkaline earth cuprate(AEC) particles step heat treatment is applied during the first heat treatment under the varying atmosphere. Experimental results showed that by adapting the step heat treatment process, the amount and particle size of the secondary phases in the final tapes are decreased. Consequently, the BSCCO 2223grain texture and Jc properties are improved.

  • PDF

Analysis of Bi-Superconducting Thin Films Fabricated by Using the Layer by Layer Deposition and Evaporation Deposition Method

  • Yang, Seung-Ho;Cheon, Min-Woo;Lee, Ho-Shik;Park, Yong-Pil
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.517-520
    • /
    • 2007
  • The BSCCO thin film fabricated by using the layer by layer deposition method was compared with the BSCCO thin film fabricated by using the evaporation method. Reevaporation in the form of Bi atoms or $Bi_2O_3$molecules easily bring out the deficiency of Bi atoms in thin film due to the long sputtering time of the layer by layer deposition. On the other hand, the respective atom numbers corresponding to BSCCO phase is concurrently supplied on the film surface in the evaporation deposition process and leads to BSCCO phase formation. Also, it is cofirmed that by optimizing the deposition condition, each single phase of the Bi2201 phase and the Bi2212 phase can be fabricated, the sticking coefficient of Bi element is clearly related to the changing of substrate temperature and the formation of the Bi2212 phase.

  • PDF