• 제목/요약/키워드: BP neural Network

검색결과 218건 처리시간 0.025초

심혈관 신호에 있어서 단기간 beat-to-beat 변이의 비선형 역할에 관한 연구 (Study on Nonlinearites of Short Term, Beat-to-beat Variability in Cardiovascular Signals)

  • Han-Go Choi
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권3호
    • /
    • pp.151-158
    • /
    • 2003
  • 심장혈관 신호에 있어서 단기간의 beat-to-beat 변이(variability)에 대한 여러 연구에서 선형 분석기법들이 사용되었다. 그러나 단기간 beat-to-beat 변이에 대해 선형기법 사용의 타당성에 대한 연구나 선형과 비선형 특성을 비교한 연구는 수행되지 않았다. 본 논문의 목적은 단기간 beat-to-beat 변이의 비선형성 특성을 조사함으로써 선형기법 사용의 적절함을 증명하고자 한다. 이를 위해 선형 ARMA와 비선형 신경망(NN) 모델을 사용하여 예측을 수행하였는데, 과거의 순시 심박(HR)과 평균 혈압(BP)으로부터 현재의 심박과 혈압 예측을 상호 비교하였다. 이러한 예측모델을 평가하기 위해 MIMIC 데이터베이스로부터 HR와 BP 시계열을 사용하였다. 실험결과에 의하면 신경망에 의한 비선형성은 단기간 beat-to-beat 변이를 생성하는 시스템 동특성을 나타내는데 의미있는 역할을 하지 못하였으며, 이 사실은 ARMA 선형 분석기법이 이러한 시스템 동특성을 나타내는데 적절함을 보여주고 있다

동적 신경망과 Geneo-tic Algorithms를 적용한 비선형 시스템의 제어 (Dynamic Neural Units and Genetic Algorithms With Applications to the Control of Unknown Nonlinear Systems)

  • 조현섭;민진경;노용기;정병조;장성환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1943-1944
    • /
    • 2006
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin

  • PDF

Neural network based model for seismic assessment of existing RC buildings

  • Caglar, Naci;Garip, Zehra Sule
    • Computers and Concrete
    • /
    • 제12권2호
    • /
    • pp.229-241
    • /
    • 2013
  • The objective of this study is to reveal the sufficiency of neural networks (NN) as a securer, quicker, more robust and reliable method to be used in seismic assessment of existing reinforced concrete buildings. The NN based approach is applied as an alternative method to determine the seismic performance of each existing RC buildings, in terms of damage level. In the application of the NN, a multilayer perceptron (MLP) with a back-propagation (BP) algorithm is employed using a scaled conjugate gradient. NN based model wasd eveloped, trained and tested through a based MATLAB program. The database of this model was developed by using a statistical procedure called P25 method. The NN based model was also proved by verification set constituting of real existing RC buildings exposed to 2003 Bingol earthquake. It is demonstrated that the NN based approach is highly successful and can be used as an alternative method to determine the seismic performance of each existing RC buildings.

Geneo-tic Algorithms을 이용한 비선형 동적 시스템 제어 (Dynamic Neural Units and Genetic Algorithms With Applications to the Control of Unknown Nonlinear Systems)

  • 김희숙;박종천;이근왕;조현섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2484-2486
    • /
    • 2004
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms. such as the back propagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

신경망과 유전 알고리즘을 사용한 비선형 시스템의 최적 제어 (Dynamic Neural Units and Genetic Algorithms With Applications to the Optimal Control of Nonlinear Systems)

  • 조현섭;민진경;이형충
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 춘계학술대회
    • /
    • pp.217-220
    • /
    • 2004
  • 'Dynamic Neural Unit'(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised loaming algorithms, such as the backpropagation (BP) algorithm, that needs training information In each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

Calibration for Color Measurement of Lean Tissue and Fat of the Beef

  • Lee, S.H.;Hwang, H.
    • Agricultural and Biosystems Engineering
    • /
    • 제4권1호
    • /
    • pp.16-21
    • /
    • 2003
  • In the agricultural field, a machine vision system has been widely used to automate most inspection processes especially in quality grading. Though machine vision system was very effective in quantifying geometrical quality factors, it had a deficiency in quantifying color information. This study was conducted to evaluate color of beef using machine vision system. Though measuring color of a beef using machine vision system had an advantage of covering whole lean tissue area at a time compared to a colorimeter, it revealed the problem of sensitivity depending on the system components such as types of camera, lighting conditions, and so on. The effect of color balancing control of a camera was investigated and multi-layer BP neural network based color calibration process was developed. Color calibration network model was trained using reference color patches and showed the high correlation with L*a*b* coordinates of a colorimeter. The proposed calibration process showed the successful adaptability to various measurement environments such as different types of cameras and light sources. Compared results with the proposed calibration process and MLR based calibration were also presented. Color calibration network was also successfully applied to measure the color of the beef. However, it was suggested that reflectance properties of reference materials for calibration and test materials should be considered to achieve more accurate color measurement.

  • PDF

Using Artificial Neural Network in the reverse design of a composite sandwich structure

  • Mortda M. Sahib;Gyorgy Kovacs
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.635-644
    • /
    • 2023
  • The design of honeycomb sandwich structures is often challenging because these structures can be tailored from a variety of possible cores and face sheets configurations, therefore, the design of sandwich structures is characterized as a time-consuming and complex task. A data-driven computational approach that integrates the analytical method and Artificial Neural Network (ANN) is developed by the authors to rapidly predict the design of sandwich structures for a targeted maximum structural deflection. The elaborated ANN reverse design approach is applied to obtain the thickness of the sandwich core, the thickness of the laminated face sheets, and safety factors for composite sandwich structure. The required data for building ANN model were obtained using the governing equations of sandwich components in conjunction with the Monte Carlo Method. Then, the functional relationship between the input and output features was created using the neural network Backpropagation (BP) algorithm. The input variables were the dimensions of the sandwich structure, the applied load, the core density, and the maximum deflection, which was the reverse input given by the designer. The outstanding performance of reverse ANN model revealed through a low value of mean square error (MSE) together with the coefficient of determination (R2) close to the unity. Furthermore, the output of the model was in good agreement with the analytical solution with a maximum error 4.7%. The combination of reverse concept and ANN may provide a potentially novel approach in designing of sandwich structures. The main added value of this study is the elaboration of a reverse ANN model, which provides a low computational technique as well as savestime in the design or redesign of sandwich structures compared to analytical and finite element approaches.

하수처리 공정을 위한 Type-2 RBF Neural Networks 모델링 설계 (Design of Type-2 Radial Basis Function Neural Networks Modeling for Sewage Treatment Process)

  • 이승철;권학주;오성권
    • 전기학회논문지
    • /
    • 제64권10호
    • /
    • pp.1469-1478
    • /
    • 2015
  • In this paper, The methodology of Type-2 fuzzy set-based Radial Basis Function Neural Network(T2RBFNN) is proposed for Sewage Treatment Process and the simulator is developed for application to the real-world sewage treatment plant by using the proposed model. The proposed model has robust characteristic than conventional RBFNN. architecture of network consist of three layers such as input layer, hidden layer and output layer of RBFNN, and Type-2 fuzzy set is applied to receptive field in contrast with conventional radial basis function. In addition, the connection weights of the proposed model are defined as linear polynomial function, and then are learned through Back-Propagation(BP). Type reduction is carried out by using Karnik and Mendel(KM) algorithm between hidden layer and output layer. Sewage treatment data obtained from real-world sewage treatment plant is employed to evaluate performance of the proposed model, and their results are analyzed as well as compared with those of conventional RBFNN.

다치 신경망을 이용한 패턴 인식 (Pattern Recognition Based on Multi-Valued Logic Neural Network)

  • 김두완;허철회;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.241-244
    • /
    • 2002
  • 본 논문은 다치(MVL : Multiple Valued Logic) 신경망의 BP 알고리즘을 이용하여 패턴 인식에 응용하는 방법을 제안한다. 패턴처리에 필요한 원 패턴에 대한 물체 농도의 특징을 추출하고, 물체 농도의 특징을 다치로 사상시킨다. 또한 다치 신경망을 이용하여 원 패턴을 학습을 시킨 다음, 노이즈 패턴을 제거하여 원 패턴에 근접한 패턴을 인식하게 되므로, 패턴에 필요한 시간 및 기억 공간을 최소화할 수 있다.

  • PDF

A NEW LEARNING ALGORITHM FOR DRIVING A MOBILE VEHICLE

  • Sugisaka, Masanori;Wang, Xin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.173-178
    • /
    • 1998
  • The strategy presented in this paper is based on modifying the past patterens and adjusting the content of the driving patterns by a new algorithm. Learning happens during the driving procedure of a mobile vehicle. The purpose of this paper is to solve the problem how to realize the hardware neurocomputer by back propagation (BP) neural network learning on-line.

  • PDF