• Title/Summary/Keyword: BOD removal rate

Search Result 231, Processing Time 0.022 seconds

A Study on the Adequate Treatment of Municipal Landfill Leachate -A Case Study of Nanjido Landfill Leachate- (도시폐기물 매립지 침출수의 적정처리에 관한 연구 -난지도 폐기물 매립지 침출수를 대상으로-)

  • 이병인
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.269-276
    • /
    • 1995
  • An experimental research was conducted in order to study the treatability of municipal landfill leachate using a combined physio-chemical and biological treatment. The leachate was obtained from Nanjido landfill site in Seoul. Several sets of bench-scale sequencing batch reactor(SBR) and physic-chemical reactors were used as experimental apparatus. This experiment lasted for about 2 years. The results are as follows: 1. The characteristics of Nanjido landfill leachate were pH 7.4~8.2, BOD 79~450mg/L, COD 998~1460mg/L, $NH_3-N$ 1380~3412mg/L, 7-P 2.6~7.0mg/L, color 890~1992 unit, and heavy metals are a very small amount. 2. Either physio-chemical or biological treatment of Landfill leachate alone did not work well. So for the adequate treatment of leachate, it was necessary to deal with the physio-chemical pretreatment before biological treatment. And it was found that both electrolysis and ozone treatment are better pretreatments of leachate than others. 3. In this study, landfill leachate was effectively processed by two step : first by electrolysis pretreatment, and secondly by SBR treatment. Thus, the study showed considerable substrate removal of raw leachate, even though the rate of COD removal depended on HRT.

  • PDF

A Study on the Adequate Treatment of Municipal Landfill Leachate -A Case Study of Nanjido Landfill Leachate- (도시폐기물 매립지 침출수의 적정처리에 관한 연구 -난지도 폐기물 매립지 침출수를 대상으로-)

  • Lee, Byeong-In
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.117-117
    • /
    • 1995
  • An experimental research was conducted in order to study the treatability of municipal landfill leachate using a combined physio-chemical and biological treatment. The leachate was obtained from Nanjido landfill site in Seoul. Several sets of bench-scale sequencing batch reactor(SBR) and physic-chemical reactors were used as experimental apparatus. This experiment lasted for about 2 years. The results are as follows: 1. The characteristics of Nanjido landfill leachate were pH 7.4~8.2, BOD 79~450mg/L, COD 998~1460mg/L, $NH_3-N$ 1380~3412mg/L, 7-P 2.6~7.0mg/L, color 890~1992 unit, and heavy metals are a very small amount. 2. Either physio-chemical or biological treatment of Landfill leachate alone did not work well. So for the adequate treatment of leachate, it was necessary to deal with the physio-chemical pretreatment before biological treatment. And it was found that both electrolysis and ozone treatment are better pretreatments of leachate than others. 3. In this study, landfill leachate was effectively processed by two step : first by electrolysis pretreatment, and secondly by SBR treatment. Thus, the study showed considerable substrate removal of raw leachate, even though the rate of COD removal depended on HRT.

Combination of Sequential Batch Reactor (SBR) and Dissolved Ozone Flotation-Pressurized Ozone Oxidation (DOF-PO2) Processes for Treatment of Pigment Processing Wastewater

  • Kim, Jeong-Hyun;Kim, Hyung-Suk;Lee, Byoung-Ho
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • This study investigates the treatment of pigment wastewater using a sequential batch reactor (SBR) followed by dissolved ozone flotation-pressurized ozone oxidation treatement (DOF-$PO_2$). The process efficiency has been evaluated at the lab scale on the basis of water quality parameters. In addition, the effect of pure oxygen and air was investigated on the removal of COD, BOD, and TN in the SBR process. It was observed that under comparable conditions the removal efficiencies of these water quality parameters using pure oxygen and air were similar. The effect of the recycle rate was also investigated for its impact on the water quality parameters using different ozone dissolving pressures in a DOF process in order to optimise conditions. The results conclude that the use of an SBR and ozone contact by DOF-$PO_2$ is a highly effective treatment for pigment wastewater and aids in the achievement of effluent discharge criteria.

Reuse Possibility of By-pass Flow and Secondary Effluent using BAF (BAF를 이용한 2차 처리수의 재이용 가능성 및 강우시 하수처리장 월류수의 처리)

  • An, J.H.;Park, J.B.;Kim, S.W.;Park, J.H.;Ha, J.S.;Choi, E.
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.190-195
    • /
    • 2005
  • The laboratory and pilot scale BAFs (biological aerated filters) were operated with 0.3 hr to 1.1 hr EBCT(empty bed contact time) at a maximum filtration rate of $472m^3/m^2/day$ as a treatment method for reuse of secondary effluent and by-pass flow in this study. The effluent BOD and SS were generally 3.5 to 5 mg/L and 2 to 3 mg/L, respectively with 2ndary effluent, but the SS concentrations increased to 4 to 8 mg/L with the increased flow rates of by-pass flow. Potential nitrification rates were very high, but the nitrogen removal efficiencies were low due to the limited carbon sources. Bypass of a part of primary effluent seemed to be desirable to increase the nitrogen removal. Disinfection must be furnished for the reuse of BAF effluent.

Utilization and Application of Microorganisms in Treating Food Processing Wastes -Recovery of Mycelial Proteins- (식품가공공장 폐수의 미생물학적 처리 및 응용 -미생물 균체단백질 회수-)

  • Cho, Sung-Hwan;Choi, Jong-Duck;Lee, Sang-Yeol;Ki, Woo-Kyung;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.424-434
    • /
    • 1989
  • The rationale for the use of fungi in treating waste streams from food processing plants I~as been that of incorporating the dissolved and suspending nutrients into a macroscopic organism which can be filtered out readily. In order for a process using fungi to meet these objectives we examined a strain of fungi, Aspergillus fumigatus, which grew well on a variety of polysaccharide-containing materials and showed both efficient BOD removal and high quality protein recovery. In this experiment the fungal choice was based on the laboratory screening studies where the criteria used was BOD and COD reduction, growth response, mycelial yield, and the ability to compete with the natural flora. In the fermentation system used far the continuous culture of Aspergillus fumigatus the best combination of operating variables, inoculum ratio, temperature, initial pH, fermentation time and agitation rate was 5%(v/v), $35{\sim}40^{circ}C,\;pH\;4.5{\sim}5.0$, 2days and 150rpm, respectively. The fungus reduced BOD and COD to 94.0 and 90.4%, respectively and 3.15g of dry mycelium per liter of alcohol waste was harvested during 48hr of incubation time. The protein efficiency ratios for the control diet and the experimental diet containing the fungal protein were $3.42{\pm}0.15$ and $3.40{\pm}0.43$, respectively.

  • PDF

Treatment Level and Reactions of a Treatment Pond System Purifying Sinyang Stream Water (신양천 하천수정화 연못시스템의 처리수준 및 연못반응)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.6
    • /
    • pp.1-12
    • /
    • 2005
  • Treatment level and pond reactions of a pond system were examined from May to October 2002. The system was constructed in July 2000 for purifying water of Sinyang stream that flows into Koheung Estuarine Lake located in the southern part of the Korean Peninsula. The system was composed of a primary and a secondary pond in series and established on the rice field near the lake. Water pumped from the stream was funneled into the primary pond, whose effluent was discharged into the secondary pond by gravity flow. Effluent from the secondary pond was funneled into wetlands. About 130 $m^3$/day of water was pumped into the primary pond and detention time of the primary and secondary pond was about 2 days. DO from the surface to the 1.0 m depth of the primary and secondary pond was in the rage of 5.2 to 11.0 mg/L and 4.3 to 0.7 mg/L, respectively. DO at the bottom layer of the primary pond was 0 mg/L and that of the secondary pond ranged 3.0~4.7 mg/L. The primary pond functioned as a facultative pond and the secondary as an aerobic one. The temperature difference between the surface and bottom layers of the ponds in August was about $2.5^{\circ}C$ and that in May and October was about $1.0^{\circ}C$. Thermocline was observed in the primary pond during the high ambient temperature of August. The sludge depth of the primary pond in May, August, and October was 2.4, 1.9, and 2.2 cm, respectively. That of the secondary pond was 1.2, 1.0, and 1.1 cm, respectively. SS, $BOD_5$, T-N, and T-P concentrations in influent averaged 16.64, 6.71, 6.21, and 0.23 mg/L and those in effluent from the primary pond averaged 11.48, 4.97, 4.81, and 0.17 mg/L, respectively. The removal rates of the primary pond for SS, $BOD_5$, T-N and T-P were 31%, 26%, 22%, and 24%, respectively. Average concentrations of SS, $BOD_5$, T-N, and T-P in effluent from the secondary pond were 9.81, 4.07, 4.03, and 0.14 mg/L, respectively and the abatement rates of the secondary pond for SS, $BOD_5$, T-N and T-P were 20%, 12%, 13%, and 15%, respectively. SS, $BOD_5$, T-N and T-P concentrations in effluent from the primary pond were significantly low(p=0.001) when compared with those from the secondary one.

Sewage Treatment using Aerated Submerged Biological Filter(ASBF) (호기성 침지형 생물막 여과장치를 이용한 오수처리)

  • Park, Jong-Woong;Song, Ju-seok
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.523-532
    • /
    • 2000
  • The purpose of this study was to investigate the effects of the hydraulic retention time (HRT) and organic loading rate (OLR) on microbial characteristics and treatment efficiency in sewage treatment using aerated submerged biological filter (ASBF) reactor. This reactor combines biodegradation of organic substrates by fixed biomass with a physical separation of biomass by filtration in a single reactor. Both simulated wastewater and domestic wastewater were used as feed solutions. The experimental conditions were a temperature of 17 to $27^{\circ}C$, a hydraulic retention time of 1 to 9hr, an organic loading rate of 0.47 to $3.84kg\;BOD/m^3{\cdot}day$ in ASBF reactor. This equipment could obtain a stable effluent quality in spite of high variation of influent loading rate. Total biomass concentration. biofilm thickness and biofilm mass increased an exponential function according to the increasing OLR. The relationships between water content and biofilm density were in inverse proportion. The percentage of backwash water to influent flow was almost 9%. The separation efficiency of biomass was the percentage of 91 to 92 in ASBF reactor. The sludge production rates in feed solutions of simulated wastewater and domestic wastewater were 0.14~0.26 kg VSS/kg BODrem, 0.43~0.48 kg VSS/kg BODrem, respectively.

  • PDF

A Study on the Advanced Treatment Process Improvement through the Dewatering Application an Expressway Rest Area Individual Sewage Treatment Plant (휴게소 개인하수처리시설의 슬러지 탈수공정 적용에 통한 고도처리 개선 연구)

  • Choi, Yoo Hyun;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • Small size privately owned wastewater treatment plants have been difficult to treat their wasted sludge and maintain steady effluent quality compared with publicly owned wastewater treatment plants. Therefore, this study has focused on treatment efficiency enhancement, specially nitrogen removal efficiency by recycling dewatering filtrate as an alkalinity additive from filter press using $CaCO_3$. As the result, it was found that the optimal mixing ratio between the excess sludge and $CaCO_3$ was 1:2. The major operation parameters such as specific substrate utilization rate, specific nitrification rate, and specific denitrification rate were also improved 64% ($0.048-0.079mg\;BOD_5/mg\;MLVSS{\cdot}day$), 35% ($0.020-0.027mg\;NH_3-N/mg\;MLVSS{\cdot}day$) and 68% ($0.051-0.086mg\;NO_3{^-}-N/mg\;MLVSS{\cdot}day$), respectively, after the adoption of new methods. Therefore, both the problem of sludge treatment at small scale plants and the need for efficiency improvement could be solved.

Water Quality Improvement in Estuary using Wetland and Pond (습지와 유수지를 이용한 하구담수호 수질개선)

  • Ham, Jong-Hwa;Yoon, Chun-Gyeong;Moon, Yong-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.377-380
    • /
    • 2002
  • Wetland systems are widely accepted natural water purification systems around the world in nonpoint sources pollution control. In this study, the field experiment to reduce nonpoint source pollution loadings from agricultural drainage and polluted stream waters using wetland and pond system was performed. The removal rate of $BOD_5$, TSS, TN, TP, and $Chl-{\alpha}$ was 52%, 90%, 56%, 59%, and 81%, respectively. Performance of the experimental system was compared with existing data base (NADB), and it was within the range of general system performance. Overall the water quality improvement was apparent in wetland and pond system.

  • PDF

Waste Water Treatment Using Constructed Wetland and Pond System (인공습지와 연못시스템을 이용한 오수처리)

  • Kim, Min-Hee;Yoon, Chun-Gyeong;Ham, Jong-Hwa
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.470-474
    • /
    • 2001
  • A pilot study was performed at the experimental field of Konkuk University in Seoul, to examine the waste water treatment using constructed wetland and pond system. The effluent of the wetland system in winter often exceeded effluent water quality standards for sewage treatment plant, therefore, pond system could be applied to additional system. As a result, removal rate of $BOD_{5}$, SS was 84.4%, 81.5% and effluent concentration was 4.6mg/L and 5.0mg/L respectively, when surface water of pond system was discharged in March. So we concluded that pond system stored wetland effluent in winter and discharged surface water of pond system in March, so met water quality standard.

  • PDF