• 제목/요약/키워드: BNR

검색결과 114건 처리시간 0.027초

저농도 하수 유입 Membrane-BNR공정내 고정상담체 호기조에서의 SND (SND in the Fixed Media Tank of Membrane-BNR Process Treating Low C/N Wastewater)

  • 정용철;이정열;민경석
    • 한국물환경학회지
    • /
    • 제24권3호
    • /
    • pp.328-332
    • /
    • 2008
  • This research was about T-N removal efficiency of oxic reactor in which fixed media submerged from Membrane BNR(An+Ax+Ox) process. This experiment was implemented by using fixed media and changing DO concentration in the oxic reactor. Nitrification efficiencies of all modes were more than 98%. When no media was in the oxic reactor, T-N removal efficiency was only 47.4%, while it were shown from 60.3% to 67.4% with packed media, which indicated improved efficiency of 27~42%. The removal efficiencies of TCOD and BOD were more than 89%, 98% respectively, which could satisfy the guideline of advanced sewage reclamation by Department of Environment. When DO concentration in the packed oxic-media tank was 0.5~1.0 mg/L, T-N removal efficiency was low, which resulted from insufficient nitrification in the oxic reactor. Therefore, DO concentration of bulk solution needs to be kept more than 1.0 mg/L to induce higher nitrification efficiency in the reactor in which media was submerged. Also, the selection of DO concentration is important to prevent media from being clogged.

Membrane-BNR 공정의 유동상 담체 호기조내 SND 평가 (SND in Fludized Media Aerobic Tank of Membrane-BNR Process)

  • 이정열;민경석
    • 한국물환경학회지
    • /
    • 제25권2호
    • /
    • pp.322-328
    • /
    • 2009
  • The advantage of simultaneous nitrification and denitrification (SND) is to reduce requirement of oxygen as well as tank volume. The fludized media was used in the oxic (aerobic) tank of Membrane-BNR to enhance the efficiency of SND. Nowadays, the interest of applying membrane to the wastewater treatment plant has been increased, which is proved by a lot of research published about the MBR. The Membrane-BNR, consisted of total 5 reactors might be called the compact process by using the fludized media and having short HRT of 6.5 hr. It could attain the further removal of not only the organics but also nutrients such as T-N and T-P. The mode A and B were identified with or without the step feed of influent. The mode A was classified with 3 modes according to the different DO concentration in the fludized media aerobic reactor, and the mode B with step feed was operated with the optimum DO condition. The step-feed was capable of improving TN removal efficiency under the domestic wastewater with the low ratio C/N. On the other hand, the efficiency of SND with the 1.0~1.5 mg/L DO in the oxic media tank was better than the one with below 1.0 mg/L, on which the nitrification did not happen enough, and with above 3.5 mg/L, on which the reduction of anoxic area in the tank happened. It means that the profitable nitrification should be performed prior to the denitrification step. The removal efficiency of nitrogen by SND was about 20% among of total denitrified nitrogen. And some organic carbon consumed could be reduced by the endogeneous denitrification.

Lamellar 이차침전지에서의 침강 특성 파악 (Evaluation of Settling Characteristics at Lamellar Secondary Clarifier)

  • 이병희
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.471-478
    • /
    • 2012
  • Where an activated sludge system needs to be converted to biological nutrient removal(BNR) system, the secondary clarifier must handle higher MLSS from bioreactor since nitrification in BNR system that requires higher SRTs than activated sludge system. Either increase the clarifier size or modification of clarifier physical structure is required to cope with MLSS surge. One of recommended structural modification is the insertion of Lamellar within clarifier. In this study, two clarifiers - one has Lamellar structure inserted and the other does not - were used to compare the effect of Lamellar in solid/liquid separation. Same MLSS was fed to both clarifiers and concentrations of MLSS were varied. With all MLSS concentrations, attachment of MLSS on Lamellar was observed and it was found that detached MLSS caused the higher effluent SS concentrations than that of non-Lamellar clarifier effluent. From these results, Lamellar should not be inserted in clarifier to handle MLSS from BNR processes and the recommendation must be withdrawn.

사례분석을 통한 하수처리장의 최적화에 관한 연구 (A Case Study on Optimization of the Sewage Treatment Plant)

  • 노영대;우인성;김다영;김성태;이선희
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2012년 추계학술대회
    • /
    • pp.121-131
    • /
    • 2012
  • This study is an analysis about BOD, COD, SS, T-N, T-P of 4Stage-BNR, MLE + CS(Coagulating Sedimentation), Bio-SAC BNR method of construction for 3 largest sewage treatment plants among 12 sewage treatment plants in Incheon. The purpose of this study is improving the operational effectiveness for Incheon sewage treatment plant by introducing the optimized method for quality of the discharged water.

  • PDF

ASM No. 2d를 이용한 생물학적 질소, 인 제거 공정의 최적 설계 및 운전인자 고찰 (Optimal Design and Process Parameters of Biological Nutrent Removal Processes using Activated Sludge Model No.2d)

  • 안호철;박명균;유희찬;김대성;안원식;허용록
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1400-1404
    • /
    • 2006
  • 생물학적 질소, 인 제거 공정(이하 BNR)의 운전에 있어서 최적 유입수의 C/N(COD/TKN)비, SRT 및 온도의 범위 및 정량적 수치 등은 유기물 뿐 만아니라 질소, 인의 처리 효율에 있어서 매우 중요하다. 특히, 외국과 다른 저농도 유기물 특성을 보이는 국내 하수에 대해서는 BNR 공정의 선택과 설계 및 운전인자의 선별이 무엇보다도 중요한 역할을 한다. 본 연구에서는 IAWQ에서 제시한 ASM No.2d를 기초로 하여 만들어진 전산모형인 Envirosim사의 Biowin 프로그램을 시뮬레이션 도구로 활용하여, 국내 하수에 비교적 적용하기 용이한 A2/O 공정과 MUCT 공정에 대한 유기물, 질소 및 인처리 효율을 비교하고 유입수의 C/N와 SRT 및 온도에 따른 질소, 인 처리 특성과 유출수의 거동 등을 파악하였다. 시뮬레이션 결과, 국내 하수에서는 A2/O 보다는 MUCT 공정이 질소, 인 처리효율이 더 크게 나타났다. 온도와 SRT가 일정한 상태에서 C/N비는 7이상에서 TKN과 TP제거효율이 양호하게 나타났고, 온도와 C/N비를 일정한 조건에서는 SRT가 7일을 넘어서면 효율이 급격히 낮아지는 현상을 관찰할 수 있었다. 온도조건 실험에서는 $20^{\circ}C$이하, 특히 국내 하수처리장에 BNR 적용시 설게조건인 $13^{\circ}C$에 근접해서는 TKN의 제거효율은 급격히 떨어지는 반면에 인 제거효율이 상승하는 것으로 나타났다.

  • PDF

Spent Sulfidic Casutic의 BNR 공정 적용을 위한 최적화 연구 (Study on the Optimization of Spent Sulfidic Caustic Applied for BNR Process)

  • 이재호;주동진;박정진;신춘환
    • 한국환경과학회지
    • /
    • 제20권12호
    • /
    • pp.1617-1624
    • /
    • 2011
  • Caustic (NaOH) solution is used to remove $H_2S$ from hydrocarbon streams in petroleum refining industry, gradually being, so called, spent sulfidic caustic (SSC) which has high levels of $H_2S$ and alkalinity. Thus, SSC can be used as an electron donor and a buffering agent for autotrophic denitrification. As SSC, however, contains some non-biodegradable organics, air stripping was conducted to remove the non-biodegradable organics. As a result, over 93 % of the non-biodegradable organics was removed within 30 min of aeration. Then, $Na_2S_2O_3{\cdot}5H_2O$, methanol and organic matters, which are produced from a biodiesel production plant, were added to reform the air-stripped SSC and their products being referred to new sulfidic caustics (NSCs) I, II and III, respectively. Thereafter, to investigate the effect of these products on the removal of COD and TN, these products were injected to a biological nitrogen removal (BNR) process, resulting in additional 44 % TN removal without noticeable increase in the effluent COD level. Therefore, it can be said that the BNR process is a promising option to treat NSC as demonstrated in this study whose results can be useful for developing resource recovery technologies.

Denaturing Gradient Gel Electrophoresis Analysis of Bacterial Populations in 5-Stage Biological Nutrient Removal Process with Step Feed System for Wastewater Treatment

  • Lee, Soo-Youn;Kim, Hyeon-Guk;Park, Jong-Bok;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • 제42권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Changes in the bacterial populations of a 5-stage biological nutrient removal (BNR) process, with a step feed system for wastewater treatment, were monitored by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA fragments. DGGE analysis indicated seasonal community changes were observed, however, community profiles of the total bacteria of each reactor showed only minor differences in the samples obtained from the same season. The number of major bands was higher in the summer samples, and decreased during the winter period, indicating that the microbial community structure became simpler at low temperatures. Since the nitrogen and phosphate removal efficiencies were highly maintained throughout the winter operation period, the bacteria which still remaining in the winter sample can be considered important, playing a key role in the present 5-stage BNR sludge. The prominent DGGE bands were excised, and sequenced to gain insight into the identities of the predominant bacterial populations present, and most were found to not be closely related to previously characterized bacteria. These data suggest the importance of culture-independent methods for the quality control of wastewater treatment.

파이롯트 규모의 BNR 공법에 의한 도시하수의 질소 및 인 제거 (Removal of Nitrogen and Phosphorus from Municipal Wastewater by a Pilot-scale BNR Process)

  • 김영철
    • 상하수도학회지
    • /
    • 제21권5호
    • /
    • pp.589-599
    • /
    • 2007
  • This study was conducted to investigated the removal efficiency of BOD and nutrient for the treatment of low strength municipal wastewater by a biological nutrient removal system. In this experiment, the effect of operating parameter including HRT of 7.0hr, BOD/TN ratios of 2.62~4.08, internal recycle of 50~300%, and return sludge of 50~100%, were studied during winter season. Efficiencies of organic matter and T-P removal and denitrification were not significantly affected by the change of temperature in winter season. However, the specific nitrification rate and nitrification efficiency decreased at low temperature. Besides, denitrification efficiencies increased with increasing BOD/TN ratios. It was also found that the internal recycle and return sludge ratio below 50% is required for the effective denitrification of low strength municipal wastewater. With operating mode 4 of the optimum, the effluent BOD, T-N and T-P concentration were obtained to average 5.8, 14.6, and 0.84 mg/L, respectively. The temperature-activity coefficient (${\theta}$) of specific nitrification rate, specific denitrification rate and specific phosphorus uptake rate were obtained 1.044, 1.017, 1.028, respectively.