• 제목/요약/키워드: BMP15

검색결과 87건 처리시간 0.022초

Treatment of Exogenous GDF9 and BMP15 during In Vitro Maturation of Oocytes increases the Cell Number of Blastocysts in Pigs

  • Kim, Min Ju;Kim, Young June;Shim, Hosup
    • 한국수정란이식학회지
    • /
    • 제31권1호
    • /
    • pp.9-12
    • /
    • 2016
  • Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors that regulate many critical processes involved in early folliculogenesis and oocyte maturation. In this study, effects of GDF9 and BMP15 treatment during in vitro maturation of porcine oocytes upon development after parthenogenetic activation were investigated. Neither GDF, BMP15 alone nor in combination affects the number and viability of cumulus cells or the rates of oocyte maturation and blastocyst development. However, the treatment of GDF9 on porcine oocytes increased the number of trophectodermal (TE) cells of blastocysts derived from activated oocytes (P<0.05). The treatment of BMP15 increased the cell numbers of both inner cell mass (ICM) and TE cells (P<0.05). The treatment with the combination of GDF9 and BMP15 further increased the numbers of ICM and TE cells, compared with GDF9 or BMP15 treatment alone (P<0.05). In conclusion, the treatment of GDF9 or BMP15 (or both) enhanced the quality of blastocysts via the increased number of ICM and/or TE cells.

두개봉합부의 초기형태발생과정에서 BMP와 그 수용체의 발현 양상 (THE EXPRESSION PATTERN OF BMPS AND THEIR RECEPTORS IN CALVARIAL SUTURE DEVELOPMENT)

  • 윤양하;이상원;박미현;류현모;남순현;김영진;김현정
    • 대한소아치과학회지
    • /
    • 제29권3호
    • /
    • pp.345-353
    • /
    • 2002
  • Bone morphogenetic proteins(BMPs)는 형태형성 및 세포 분화동안 다양한 조절 역할을 담당하는 신호전달 인자이다. 시상두개봉합부 발생시 BMPs와 그 수용체의 역할을 분석하기 위해, in situ hybridization방법을 이용하여 태생 15일에서 18일 시상두개봉합부에서 그 발현 양상을 분석하였다. BMP-2와 BMP-3은 태생 15일부터 osteogenic front와 두정골에서 발현을 보였으며 태생 16일부터 모낭에서 발현이 시작되었다. BMP-4는 osteogenic front에서 강하게 발현되었으며, 간엽조직 및 두정골에서 약하게 발현되었다. BMP-5는 모낭에서 발현되었다. 이전 연구에서 BMP-6는 비후된 연골세포에서 발현된다고 보고되었으나 본 연구에서는 발현되지 않았다. BMP-7은 태생기에 두정골에서 발현되었다. BMPR-IB는 osteogenic front의 외측 가장자리에서 발현되었으나, BMPR-IA는 발현되지 않았다. 이런 결과를 종합해 볼 때, 두개봉합부 초기 형태발생시 BMP-4는 미분화 간엽세포로부터 골아세포로 commit되는 초기단계에 중요한 역할을 하며, BMP-2와 BMP-3는 전구 골아세포에서 골아세포로의 분화과정에, BMP-7은 좀 더 분화가 진행된 골아세포 및 골의 분화 유지에 중요하며, type I 수용체 중 BMPR-IB가 BMP들의 신호전달에 중요한 역할을 함을 예측 할 수 있다. 결론적으로 BMP 신호전달은 다양한 BMP 리간드들과 그 수용체들에 의해 골아세포 분화 전반에 걸쳐 관여하고 있음을 시사한다.

  • PDF

Association of Polymorphisms in Fecundity Genes of GDF9, BMP15 and BMP15-1B with Litter Size in Iranian Baluchi Sheep

  • Moradband, F.;Rahimi, G.;Gholizadeh, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권9호
    • /
    • pp.1179-1183
    • /
    • 2011
  • The incidence of mutation in three loci of GDF9, BMP15 and BMP15-1B and their effects on litter sizes was evaluated in Baluchi sheep. Wild-type alleles were detected for BMP15 and BMP15-1B loci and all individuals were found to be as non-carriers for FecB and $FecX^G$ mutations but, a G to A nucleotide substitution was found in GDF9 locus. The frequency of $FecG^+$ (0.82) wild type allele was higher than the frequency of $FecG^l$ (0.18) mutant allele and the frequencies of $FecG^+/FecG^+$, $FecG^+/FecG^1$ and $FecG^1/FecG^1$ genotypes were 0.72, 0.20 and 0.08, respectively in GDF9 locus. The heterozygous ($FecG^+/FecG^1$) and homozygous ($FecG^+/FecG^+$) non-carrier ewes had 0.35 and 0.21 more lambs than the homozygous ($FecG^1/FecG^1$) carrier ewes, respectively (p<0.05). In addition to the finding of segregation of non-additive gene effect on litter size in the previous study in Baluchi sheep, these findings for the first time shows that the $FecG^1$ gene has a major effect on litter size in this breed.

Comparative Analysis of ABM/P-15, Bone Morphogenic Protein and Demineralized Bone Matrix after Instrumented Lumbar Interbody Fusion

  • Sathe, Ashwin;Lee, Sang-Ho;Kim, Shin-Jae;Eun, Sang Soo;Choi, Yong Soo;Lee, Shih-min;Seuk, Ju-Wan;Lee, Yoon Sun;Shin, Sang-Ha;Bae, Junseok
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권6호
    • /
    • pp.825-833
    • /
    • 2022
  • Objective : ABM/P-15 (anorganic bone matrix/15-amino acid peptide fragment) is a commercially available synthetically manufactured P-15 collagen peptide fragment, that is adsorbed on ABM. This study was done to investigate the efficacy of ABM/P-15 in achieving fusion in the lumbar spine and comparing it with that of recombinant bone morphogenic protein-2 (rhBMP-2) and demineralized bone matrix (DBM). Methods : A retrospective observational study of prospectively collected data of 140 patients who underwent lumbar spinal fusion surgeries in a single specialty spine hospital between 2016 and 2020, with a minimum 6-month follow-up was conducted. Based on the material used for the augmentation of the bone graft at the fusion site, the patients were divided into three categories namely ABM/P-15, rhBMP-2, and DBM group. Results : ABM/P-15, rhBMP-2, and DBM were used in 46, 44, and 50 patients, respectively. Patient characteristics like age, gender, bone mineral density, smoking history, and presence of diabetes mellitus were comparable amongst the three groups. Average follow-up was 16.0±5.2, 17.9±9.8, and 26.2±14.9 months, respectively in ABM/P-15, rhBMP-2, and DBM groups. The fusion was achieved in 97.9%, 93.2%, and 98% patients while the average time-to-union was 4.05±2.01, 10±4.28, and 9.44±3.49 months (p<0.001), respectively for ABM/P-15, rhBMP-2, and DBM groups. The average pre-operative Visual analogue scale score was 6.93±2.42, 7.14±1.97, 7.01±2.14 (p=0.900) for ABM/P-15, rhBMP-2 and DBM groups, respectively, which reduced to 1.02±0.80, 1.21±0.96, and 0.54±0.70 (p=0.112), respectively at the last follow up. Pre-operative Oswestry disability index scores were 52.7±18.02, 55.4±16.8, and 53.56±19.6 (p=0.751) in ABM/P-15, rhBMP-2, and DBM groups, which post-operatively reduced to 33.77±15.52, 39.42±16.47, and 38.3±15.89 (p=0.412) and further to 15.74±8.3, 17.41±10.45, and 16.76±9.81 (p=0.603), respectively at the last follow-up. Conclusion : ABM/P-15 appears to achieve union significantly earlier than rhBMP-2 and DBM in lumbar spinal fusion cases while maintaining a comparable clinical and complication profile.

Expression of BMP6 is Associated with its Methylation Status in Colorectal Cancer Tissue but Lacks Prognostic Significance

  • Sangplod, Patcharaporn;Kanngurn, Samornmas;Boonpipattanapong, Teeranut;Ruangrat, Pritsana;Sangkhathat, Surasak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권17호
    • /
    • pp.7091-7095
    • /
    • 2014
  • Background: The study aimed to evaluate the incidence of CpG island promoter methylation of BMP6, a member of the transforming growth factor beta family, in tissue samples from colorectal cancers (CRC) and look for its association with BMP6 expression and clinicopathological correlation. Materials and Methods: Methylation specific PCR for the BMP6 promoter region was performed with 85 frozen tissue samples of CRC and 45 of normal colon. Methylation status of MLH1 was also determined by the same method. Expression of BMP6 was evaluated by immunohistochemistry (IHC), using Allred's scoring system. The methylation status was analyzed against clinical and pathological parameters in CRC. Results: The study revealed BMP6 hypermethylation in 34 of 85 tumor specimens (40%), and 15 out of 45 normal tissue samples from CRC (33%). The incidence of hypermethylation was inversely correlated with IHC score. Allred's scores of 7 or more were correlated with lower frequency of BMP6 hypermethylation (29% compared to 50% in the remaining, p-value 0.049). However, there was no association between hypermethylation status and any clinicopathological parameters. The methylation status of BMP6 was not correlated with that of MLH1, a key methylation determinant in CRC. On survival analysis, there was no significant difference in progress-free survival (PFS) between the cases with and without hypermethylation (2-year PFS 74% and 76%, respectively). Conclusions: CpG island methylation of BMP6 is found in high frequency in CRC and this epigenetic event is associated with suppressed protein expression in the tumor tissue. However, the marker is not associated with tumor progression of the disease.

Bone Morphogenetic Protein 2 가 두개골 성장 및 두개봉합부의 초기형태발생에 미치는 영향 (THE EFFECT OF BONE MORPHOGENETIC PROTEIN 2(BMP2) ON THE GROWTH OF CRANIAL BONE AND EARLY MORPHOGENESIS OF THE CRANIAL SUTURE)

  • 정혜경;박미현;유현모;남순현;김영진;김현정
    • 대한소아치과학회지
    • /
    • 제30권2호
    • /
    • pp.217-228
    • /
    • 2003
  • 뇌와 두개골의 조화로운 성장 발육은 성장 중인 두개골과 이 뼈들을 연결하는 두개봉합부들 그리고 발육중인 뇌사이의 일련의 상호작용에 의해 이루어진다. 두개봉합부의 조기융합으로 알려진 craniosynostosis는 이러한 상호균형적인 관계가 파괴될 때 야기될 수 있다. Bone morphogenetic protein의 하나인 Bmp2는 골 각각의 형태와 골격의 상대적인 비례성을 조절하는데 관여하고 있으며, Bmp의 하부 유전자로 알려져 있는 Msx2 homeobox 유전자의 돌연변이는 Boston-type craniosynostosis를 야기한다 이와 함께 Dlx5 homozygote mutant mouse의 표현형은 두개골 골화의 지연을 포함한 다양한 두개안면의 이상을 나타낸다. 이러한 사실들은 Bmp2, Msx2, Dlx5 유전자들이 두개봉합부의 형태발생과정에 중요하게 작용할 수 있음을 시사하고 있다. Mouse 두개봉합부의 초기형태발생과정에 위 유전자들의 기능을 알아보기 위해, 태생기 동안의 시상봉합부에서의 Bmp2, Msx2, Dlx5 유전자들의 발현양상을 in situ hybridization 방법을 이용하여 분석하였다. Bmp2 mRNA는 osteogenic front에서 강하게 발현되었으며, parietal bone의 골막에서도 관찰되었다. Msx2 mRNA는 시상봉합부의 미분화 간엽조직에서 강하게 발현되었으며, osteogenie front 및 dura mater에서도 관찰되었다. Dlx5 mRNA는 osteogenic front와 parietal bone에서 강하게 발현되었다. 두개봉합부에서의 Bmp signaling의 역할을 알아보기 위해 태생 15.5일 mouse의 두개골을 이용하여 in vitro 실험을 시행하였다. Bmp2-soaked beads를 osteogenic fronts에 올려놓고 48시간 기관배양한 결과 BSA 대조군에 비해 Bmp2 beads 주위 조직의 두께와 세포수가 증가하였으며 Msx2와 Dlx5 유전자들의 발현을 유도하였다. 그러나 FGF2 beads주위로는 이들 유전자들의 발현이 관찰되지 않았다. 이러한 결과들을 종합해 볼 때, Bmp2 유전자는 두개골 성장과 두개봉합부의 초기 형태발생을 조절하는데 중요한 역할을 담당하고 있으며, Bmp signaling은 Msx2, Dlx5 유전자들을 조절함으로써 두개골의 골화와 두개봉합부의 유지에 관여하고 있음을 제시해 주고 있다.

  • PDF

고초균을 이용한 재조합 인간 골 형성 단백질-7의 발현과 정제 (Expression and Purification of Recombinant Human Bone Morphogenetic Protein-7 (rhBMP-7) in Bacillus subtilis)

  • 김춘광;오성덕;이종일
    • KSBB Journal
    • /
    • 제25권3호
    • /
    • pp.257-264
    • /
    • 2010
  • Bone morphogenetic protein-7 (BMP-7) is one of important growth factors for skeletal development and bone growth. In this work, BMP-7 was efficiently expressed in recombinant Bacillus subtilis. The mature BMP-7 protein indicated molecular weight of 15.4 kDa by Western blot assay and was secreted into culture medium with 0.35 ng/mL. The extracellular and intracellular rhBMP-7 proteins were purified by using a FPLC system with an ion exchange column and a gel filtration column. The extracellular and intracellular rhBMP-7 proteins had finally a 57.1% purity and a 36.2% purity, respectively. The purified rhBMP-7 proteins showed an intact biological activity which stimulated alkaline phophatase (ALP) activity in MC3T3-E1 cells.

Association of a Single Codon Deletion in Bone Morphogenetic Protein 15 Gene with Prolificacy in Small Tail Han Sheep

  • Guo, W.;Chu, M.X.;Deng, X.M.;Feng, J.D.;Li, Ning;Wu, Changxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권11호
    • /
    • pp.1491-1495
    • /
    • 2004
  • Small Tail Han Sheep has significant characteristics of high prolificacy and non-seasonal ovulatory activity and is an excellent local sheep breed in P. R. China. Recently a novel member of the transforming growth factor $\beta$ (TGF$\beta$) superfamily termed bone morphogenetic protein 15 (BMP15) was shown to be specifically expressed in oocytes and to be essential for female fertility. Therefore, BMP15 is a candidate gene for reproductive performance of Small Tail Han Sheep. The whole genomic nucleotide sequence of BMP15 gene in Small Tail Han Sheep was searched for polymorphisms by PCR-SSCP and direct sequencing, and only one polymorphism was found. The polymorphism was a result of a 3 base pair deletion, which eliminated a single Leu codon (CTT). The allelic frequencies for A (without deletion) and B (with a codon deletion) are 0.73 and 0.27 respectively. The effects of BMP15 genotype on litter size were evaluated using the least squares model. This indicated that there was a significant association between litter size of Small Tail Han Sheep and a deletion in BMP15 gene (p=0.02<0.05). Small Tail Han Sheep ewes with AA and AB genotype produce on average 0.5 and 0.3 more lambs per litter than those ewes with BB genotype.

High-Level Expression of Recombinant Human Bone Morphogenetic Protein-4 in Chinese Hamster Ovary Cells

  • PARK JUNHO;YU SUNGRYUL;YOON JAESEUNG;BAEK KWANGHEE
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1397-1401
    • /
    • 2005
  • Bone morphogenetic protein-4 (BMP-4) is a signaling homodimeric molecule that acts as a morphogen to influence cell fate in a concentration-dependent manner. The limited supply of a pure preparation of BMP-4, due to very low level of their expression in vivo, makes it difficult not only to study the biological activities of BMPs, but also to use them as a clinical tool. For a large-scale production of BMP-4, human BMP-4 cDNA was expressed in Chinese hamster ovary (CHO) cells by a recently development vector system, which confers position-independent stable expression of the foreign genes. The CHO cell line expressing recombinant human BMP-4 (rhBMP-4) at the level of $7\;{\mu}g/ml$ could be obtained after stepwise selection with methotrexate. This level of expression is about 70 times higher than those previously reported. The partially processed form of BMP-4 as well as mature form could be detected, when the aliquots of culture media were analyzed by Western blot. The glycosylation pattern and biological activity of the rhBMP-4 were determined by glycosidase treatment and the induction rate of alkaline phosphatase in mouse osteoblastic cells.

Zinc upregulates bone-specific transcription factor Runx2 expression via BMP-2 signaling and Smad-1 phosphorylation in osteoblasts

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • 제51권1호
    • /
    • pp.23-30
    • /
    • 2018
  • Purpose: Runx2 (runt-related transcription factor 2), a bone-specific transcription factor, is a key regulator of osteoblast differentiation and its expression is induced by the activation of BMP-2 signaling. This study examined whether zinc modulates BMP-2 signaling and therefore stimulates Runx2 and osteoblast differentiation gene expression. Methods: Two osteoblastic MC3T3-E1 cell lines (subclones 4 as a high osteoblast differentiation and subclone 24 as a low osteoblastic differentiation) were cultured in an osteogenic medium (OSM) as the normal control, Zn-($1{\mu}M$ Zn) or Zn+($15{\mu}M$ Zn) for 24 h. The genes and proteins for BMP-2 signaling (BMP-2, Smad-1/p-Smad-1), transcription factors (Runx2, osterix), and osteoblast differentiation marker proteins were assessed. Results: In both cell lines, BMP-2 mRAN and protein expression and extracellular BMP-2 secretion all decreased in Zn-. The expression of Smad-1 (downstream regulator of BMP-2 signaling) and p-Smad-1 (phosphorylated Smad-1) also downregulated in Zn-. Furthermore, the expression of the bone-specific transcription factors, Runx2 and osterix, decreased in Zn-, which might be due to the decreased BMP-2 expression and Smad-1 activation (p-Smad-1) by Zn-, because Runx2 and osterix both are downstream in BMP-2 signaling. Bone marker gene expression, such as alkaline phosphatase (ALP), collagen type I (COLI), osteocalcin, and osteopontin were also downregulated in Zn-. Conclusion: The results suggest that a zinc deficiency in osteoblasts suppresses the BMP-2 signaling pathway via the suppression of Smad-1 activation, and this suppressed BMP-2 signaling can cause poor osteoblast differentiation.