• Title/Summary/Keyword: BME MLCC

Search Result 2, Processing Time 0.015 seconds

Study on the Electrical propertics of high capacitance Multilayer Ceramic Capacitor (고용량 MLCC의 전기적 특성에 관한 연구)

  • Kim, Hyun-Duk;Yoon, Jung-Rag;Kim, Eung-Kwon;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.348-348
    • /
    • 2005
  • High capacitance MLCC has been enabled through the use of nickel electrodes to produce thinner layers at acceptable costs. High capacitance MLCC devices offer significant advantages to electrolytics such as tantalum and aluminum ; Lower ESR for high frequency applications. Non-polarized. Many process improvement have enabled this technology Higher dielectric constants Thinner dielectric and electrode layers through BME More accurate layer construction. This study is high capacitance MLCC electrical propertics. reliability, Analysis on DOE(Design Of Experiment) of the electical propertics.

  • PDF

Analysis the Reliability of Multilayer Ceramic Capacitor with inner Ni Electrode under highly Accelerated Life Test Conditions

  • Yoon, Jung-Rag;Lee, Kyung-Min;Lee, Serk-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.5-8
    • /
    • 2009
  • The reliability of multilayer ceramic capacitor with active thin dielectric layer was investigated by highly accelerated life test at various stress condition. The distribution of multilayer ceramic capacitor failure times is plotted as a function of time from Weibull distribution function. According to the test result, voltage acceleration factor is obtained from 2.24 to 2.96. The acceleration by temperature is much higher than other values of active thick dielectric layer. It is clear that median time to failure is affected by the stress voltage for high volumetric efficiency ceramic capacitors with active thin dielectric layer. The degradation under stress of voltage involves electromigration and accumulation of oxygen vacancy at Ni electrode interface of cathode.