• Title/Summary/Keyword: BLU CCFL electrode

Search Result 13, Processing Time 0.03 seconds

Study on Plasma Treatment of electrode for CCFL (CCFL 전극의 플라즈마 처리에 관한 연구)

  • Park, Hyun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1308-1312
    • /
    • 2011
  • CCFL(Cold Cathode Fluorescent Lamp)for BLU of LCD and special lighting has been widely utilized. The removal of oxide film formed on electrode of CCFL in manufacturing process is required. In this pape Plasma treatment was carried out to remove the oxide film. To ensure the optimum process, the analysis of sheet resistance, XRD, AFM and solder test was conducted. A minimum sheet resistance and the maximum percentage of the solder coverage ratio were measured in optimal process conditions such as plasma power consumption 600W and processing time of 70 seconds. As the plasma treatment is confirmed to be due to removal of copper oxide, this process is expected to be used as a treatment of electrode for CCFL.

All goods Inspection Convergence System for the Development of LCD Molybdenum Pin (LCD 몰리브덴 핀 개발을 위한 전수검사 융합시스템)

  • Lee, Jeongl-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.183-187
    • /
    • 2020
  • The molybdenum cup and molybdenum pin, which are the main materials of the molybdenum electrode used for the LCD BLU CCFL electrode, have not been developed in Japan and all of them are imported and used from Japan, is giving a competitive burden. In this research, to develop the manufacturing technology of molybdenum pin used for CCFL electrode of LCD BLU, development of linear processing technology, development of molybdenum wire surface treatment technology, development of wire cutting technology, production of molybdenum pin, design and fabrication of JIG and Fixture for inspection, molybdenum pin prototyping and analysis, and development of 100% molybdenum pin inspection technology. In this paper, especially, In this paper, especially, research on the convergency design for total inspection machine is treated. is treated.

Manufacturing of molybdenum pin(CCFL) for electrode - convergency research on design and manufacturing of JIG and Fixture for molybdenum pin manufacturing and inspection (전극용 몰리브덴 핀 제조-몰리브덴 핀 제작 및 검사용 JIG and Fixture 설계 및 제작 융합연구)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.197-201
    • /
    • 2020
  • The molybdenum cup and molybdenum pin, which are the main materials of the molybdenum electrode used for the LCD BLU CCFL electrode, did not been developed in Japan and all of them are imported and used from Japan, is giving a competitive burden. In this research, to develop the manufacturing technology of molybdenum pin used for CCFL electrode of LCD BLU, development of linear processing technology, development of molybdenum wire surface treatment technology, development of wire cutting technology, production of molybdenum pin, design and fabrication of JIG and Fixture for inspection, molybdenum pin prototyping and analysis, and development of 100% molybdenum pin inspection technology. In this paper, especially, research on design and manufacturing of JIG and Fixture for molybdenum pin manufacturing and inspection is treated.

Characteristics of Microwelded BLU CCFL Electrode in Terms of Glass Beading Heat Treatment Temperature (미세 용접된 BLU CCFL 전극의 유리비딩 열처리 온도에 따른 접합부 특성)

  • Kim, Gwang-Soo;Kim, Sang-Duck;Kwon, Hyuk-Dong
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.73-78
    • /
    • 2009
  • Characterization of the microweld CCFL electrode for the TFT-LCD backlight unit was carried out in terms of the glass beading heat treatment conditions. We evaluate the weld zone and parent metal of the microweld CCFL electrodes that were exposed to simulated glass beading heat treatment. The CCFL electrode was composed of the cup made with pure Ni, the pin made with pure Mo and the lead wire made with Ni-Mn alloy. Each part of the electrode was assembled together by micro spot welding process and then the assembled electrodes were exposed to simulated glass beading temperatures of $700^{\circ}C,\;750^{\circ}C$ and $800^{\circ}C$. The microstructures of the microweld CCFL electrode were observed by using optical microscope, scanning electron microscope and EDS. Micro-tensile and microhardness test were also carried out. The results indicated that the grain coarsening in the HAZs(heat affected zones) for both the cup-pin weld and pin-lead wire were exhibited and the grain coarsening of the HAZ for the cup and the lead wire was more obvious than the HAZ of the pin. The micro-tensile test revealed that the fracture occurred at the cup-pin weld zone for all test conditions. The fracture surface could be classified into two parts such as pin portion and cup portion including weld nugget. The failure was seemed to be initiated from the boundary between nugget and pin through the weld joint. The result of the microhardness measurement exhibited that the relatively low hardness value, about 105HV was recorded at the HAZ of the cup. This value was about 50% less than that of the original value of the cup. The reduction of the microhardness was considered as the cause of the grain coarsening due to welding process. It was also appeared that there was no change in electric resistance for the standard electrodes and heat treated electrodes.

Development of CCFL with Nb/Ni Gad Electrode for high efficiency (Nb/Ni Clad 전극을 이용한 고효율 CCFL 개발)

  • Park, Ki-Duck;Yang, Seong-Su;Park, Doo-Sung;Kim, Seo-Yoon;Lim, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.441-443
    • /
    • 2005
  • According as CCFL(Cold Cathode Fluorescent lamp) of light source in Backlight unit for Note PC (Personal computer) is presently needed to low power consumption and long life time, the development focus of CCFL is going on the discharge gas, phosphor and electrode material. First of all, discharge voltage characteristic of CCFL is closely connected with electrode material For low discharge voltage, the characteristic of electrode material is needed to low work function, low sputtering ratio and superior manufacturing property. We developed new CCFL with Nb/Ni Clad electrode superior to conventional CCFL. Because Nb/Ni Clad electrode with Ni material and Nb material, the electrical characteristic is superior to other electrode materials. The electrode of Nb/Ni Clad is composed that Ni of outside material has superior manufacturing property and Nb of inside material has low work function. Nb/Ni Clad of new electrode material is made by process of Rolling mill at high pressure and heat treatment. We compared electrical characteristic of Nb/Ni clad electrode with conventional Mo electrode by measurement. Mo electrode and Nb/Ni Clad electrode of cup type with diameter 1.1 mm and length 3.0mm are used to this experiment. Material content of Mo electrode is Mo 100%. But, Nb/Ni Clad electrode is composed by content of Nb 40% and Ni 60%. The result of comparison measurement between new CCFL with Nb/Ni Clad electrode and conventional CCFL was appeared that CCFL with Nb/Ni Clad electrode had superior characteristic than conventional CCFL. As a result of experiment, we completed Note PC with low power consumption and long life time by application of new CCFL with Nb/Ni Clad electrode.

  • PDF

Microstructure and Strength of the Microjoined Electrode for the Lamp of the LCD Backlight Unit (TFT-LCD 백라이트 유닛(BLU) 램프용 전극 미세 접합부의 강도 및 미세조직)

  • Kim, Gwang-Soo;Kim, Sang-Duck
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • TFT-LCD is the most popular type of flat display panel in the information technology field. The back light unit is a main part of the structure of a TFT-LCD panel. Occasionally, studies have shown that failures of the CCFL of the BLU occur due to the poor weld characteristics of these materials. The aim of this study was to prepare some technical data and to characterize a microjoined electrode for the CCFL. Microstructure examinations, microhardness measurements, resistance measurements and microtensile tests of the microjoined electrode were carried out. The result indicates that a large amount of grain coarsening exists in the heat-affected zone (HAZ) of the weld between the cup and the pin. This grain coarsening of the HAZ between the cup and pin is caused by the welding cycle, which may have an influence on the lowest microhardness values. Fracturing of the microjoined electrode also occurred at the HAZ close to the cup between the weld holding the cup and the pin. Additionally, no specific changes of the electrical resistance among the cup, pin, and lead wire themselves or in the microjoined electrode were observed.

Characteristics of high Luminescence External Electrode Fluorescent Lamp (고휘도 외부 전극 램프의 특성)

  • Yoon, Man-Soon;Lee, Kyeong-Seon;Heo, Seong-Moo;Ur, Soon-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.34-34
    • /
    • 2007
  • 최근, LCD-TV의 대형화가 경쟁적으로 진행되고 있으며 대형 BLU를 제작하기 위해서는 백라이트의 직경을 대구경 화하고, 또한 고화질을 이루기 위하여 휘도특성을 개선시켜야 한다. 통상적으로 백라이트에 사용되는 고압방전은 환경이 증가할수록 휘도가 저하하는 특성을 나타내므로 대화면 LCD-TV를 개발하는데 문제점을 갖고 있다. 또한, LCD-TV 백라이트로 가장 많이 사용하는 CCFL은 병렬로 구동할 수 없어 다수의 트랜스포머가 필요하여 전체적인 BLU가격을 상승시키는 요인이 되고 있어 병렬구동이 가능한 EEFL을 백라이트로 사용하고자 하는 노력이 진행되고 있으나 CCFL에 비하여 휘도가 낮아 사용이 제한되고 있는 상황이다. 본 연구에서는 고휘도의 병력구동이 가능한 새로운 EEFL을 개발하였으며, 그 특성을 분석한 결과 기존 EEFL에 비하여 40%이상의 광효율을 증가시키고, 대구경에서 CCFL보다 2배 기존의 EEFL에 비하여 3배 이상의 휘도를 증가시킬 수 있으며, 동시에 병렬구동이 가능한 고휘도 외부전극램프를 개발하였다.

  • PDF

Development of High Performance Backlight Unit Employing EEFL

  • Yoo, Hyeong-Suk;Kang, Moon-Shik;Lim, Jong-Sun;Lee, Keun-Woo;Oh, Weon-Sik;Park, Jong-Dae;Kang, Sung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.835-837
    • /
    • 2002
  • The 17" Backlight Unit (BLU) employing twelve EEFLs (External Electrode Fluorescent Lamp) has been developed for LCD-TV The characteristics of the EEFL BLU without dual brightness enhancement film (DBEF) were equivalent to those of CCFL (Cold cathode Fluorescent Lamp) BLU employing eight CCFLs with DBEF. Luminance, power consumption and uniformity were 12,000nits, 32watt and 80%, respectively. The inverter of EEFL Backlight Unit is composed of 2 transformers and driven by the sinusoidal waveform.

  • PDF

The optical character analysis of the direct typed BLU for LCD TV

  • Yoon, D.K.;Park, D.S.;Han, J.M.;Oh, Y.S.;Bae, K.W.;Kim, Y.H.;Lim, Y.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1058-1061
    • /
    • 2004
  • Recently, According to companies of TFT LCD are making large sized products more and more. In the vortex of Products with a monitor and LCD TV is applied in a technique of a high viewing angle(FFS, IPS, VA). Also, as a high luminance, high speed response time, high degree of a color purity, and so on are continuing to develop a high performance, it is necessary to improve a specific character of high luminance that apply to LCD TV as a LCD BLU. Because a LCD panel for TV usually has a lower resolution that compare to a monitor, the structure of present backlight system can't put out its power even though it has a merit in transmission. Therefore, the examination of improvement about the high luminance direct typed BLU for LCD TV that presupposes several uses of CCFL(Cold Cathode Fluorescent Lamp) or EEFL(External Electrode Fluorescent Lamp)is actively being progressed. Although it is necessary to increase the number of lamps for applying high performance by the direct type, in this case, because we can design the character of luminance for adoption of high performance. We can satisfy with a level of luminance for LCD TV. Accordingly, we analyzed a change of the number of CCFL, mechanical and optical character to produce the direct typed backlight in 32inches spec. Consequently, we achieved luminance of 6597nit,which was including polarization film, and secured the standard for LCD TV.

  • PDF