• 제목/요약/키워드: BLDC (Brushless DC) Motor

검색결과 356건 처리시간 0.021초

가속수명시험에 의한 고속팬용 밀폐구조형 BLDC 모터의 열신뢰성 분석 (Thermal Reliability Analysis of BLDC Motor in a High Speed Axial Fan by the Accelerated Life Test)

  • 이태구;문종선;유호선;이재헌
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1169-1176
    • /
    • 2005
  • In this paper, thermal reliability of a closed type BLDC (Brushless DC) motor for high speed axial fan was analyzed by the accelerated life test. The closed type BLDC (Model No. MB1-8855-J01) motor was controlled by PCB module, which was composed of various electrical components. The failure of the closed type BLDC motor happened in PCB module due to high temperature. Failure mechanism of the closed type BLDC motor appears to be electrolyte dry out of capacitor. The accelerate life test was performed in temperature stress of $85^{\circ}C\;and\;105^{\circ}C$, respectively The failure data from the accelerated life test were analyzed and the life in each stress level was estimated with 960h and 261 h. At last, both life expression according to operating temperature of PCB module and life of the closed type BLBC motor in normal condition $(50^{\circ}C)$ were suggested.

4스위치 3상 BLDC 전동기의 토크 리플 저감을 위한 전류제어 알고리즘 (A Current Control Algorithm for Torque Ripple Reduction of Four-Switch Three-Phase Brushless DC Motors)

  • 박상현;김태성;이병국;현동석
    • 전력전자학회논문지
    • /
    • 제9권2호
    • /
    • pp.126-133
    • /
    • 2004
  • 본 연구에서는 저 비용 응용분야에 적합한 4스위치 3상 BLDC 전동기의 새로운 전류 제어 알고리즘을 제안하였다. 4스위치 시스템에서 빠른 속도 및 토크 응답 그리고 적은 토크 리플과 같은 좋은 동작 특성을 얻기 위한 기준 전류 발생 기법을 제안하였다. 특히, 제안한 기법은 전류 전환시 발생되는 토크 리플을 현저히 저감시켜 4스위치 시스템을 산업 응용 분야에 보다 널리 적용할 수 있을 것으로 기대한다.

A Novel Cogging Torque Reduction Method for Single-Phase Brushless DC Motor

  • Park, Young-Un;Cho, Ju-Hee;Rhyu, Se-Hyun;Kim, Dae-Kyong
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.117-124
    • /
    • 2013
  • Single-phase, brushless DC (BLDC) motors have unequal air-gaps to eliminate the dead-point where the developed torque is zero. Unfortunately, these unequal air-gaps can deteriorate the motor characteristics in the cogging torque. This paper proposes a novel design for a single-phase BLDC motor with an asymmetric notch to solve this problem. In the design method, the asymmetric notches were placed on the stator pole face, which affects the change in permanent magnet shape or the residual flux density of the permanent magnet. Parametric analysis was performed to determine the optimal size and position of the asymmetric notch to reduce the cogging torque. Finite element analysis (FEA) was used to calculate the cogging torque. A more than 28% lower cogging torque compared to the initial model with no notch was achieved.

Torque Ripple Minimization in Direct Torque Control of Brushless DC Motor

  • Li, Zhenguo;Zhang, Songfa;Zhou, Shenghai;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1569-1576
    • /
    • 2014
  • This paper mainly proposes a direct torque control strategy to minimize torque ripple in brushless DC (BLDC) motor. BLDC motor has large current and torque ripple when one voltage vector applied in one cycle due to its low inductance. Hence, this paper proposed a hysteresis torque control with PWM mode to control the resultant torque. Moreover, when the direct torque control system is operating during the two-phase half-bridge $120^{\circ}$ conduction mode, large torque ripple in commutation area appears every 120 electrical degree. Based on analyzing the root of torque ripple in detail, lookup tables of switching devices states for new half-bridge modulation mode in the positive and negative reference torque put forwarded. Finally, simulations by MATLAB software and experiment results from DSP are presented to verify the feasibility and effectiveness of the proposed strategy operating in four-quadrant operation.

공심슬롯 원통형 선형 BLDC 전동기의 설계 및 특성 고찰 (Design and Characteristics Investigation of Air-core Tubular Linear BLDC Motor)

  • 문지우;조윤현
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.603-609
    • /
    • 2008
  • Slotless linear brushless DC motor are widely used in precision machine applications because of their advantages such as low of detent force, negligible iron loss. But they have a disadvantage such as low thrust density, thrust ripple, and excessive use of permanent magnet materials. These lead to undesirable performance and high production cost. In this paper, we deal with the design and characteristics investigation of a air-core tubular linear brushless DC(TLBLDC) motor with air-core stator and permanent magnet mover. And to investigate the static and dynamic characteristics of air-core TLBLDC motor, the prototype machine is manufactured and analyzed by F.E.M. and Matlab simulink simulations. Especially, dynamic characteristics of air-core TLBLDC motor driven with 6 step inverter are simulated by F.E.M.coupling with external circuit and Matlab simulink program, and measured for the prototype motor. The simulation results are compared to the experimental results such as current waves, thrust and speed curve.

자동차 연료펌프용 BLDC 전동기구동의 센서리스 제어기법 (Control Techniques of Sensorless BLDC Motor Drive for a Vehicle Fuel Pump Application)

  • 트란 콴 빈;전태원;이홍희;김흥근;노의철
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1858-1864
    • /
    • 2011
  • This paper suggests a control technique of the sensorless brushless DC (BLDC) motor drive for a vehicle fuel pump application. The sensorless technique based on a comparator and a potential start-up method with high starting torque are proposed. The comparator is used to generate the commutation signals in phase with the three-phase back-EMFs. The rotor position is aligned at standstill for maximum starting torque without an additional sensor and any information of motor parameters. Also, the stator current can be easily adjusted by modulating the pulse width of the switching devices during alignment. Some experiments are implemented on a single chip 16-bit DSP controller to demonstrate the feasibility of the sensorless techniques.

d-q 동기좌표 변환 개념을 이용한 BLDC 전동기의 센서리스 (Sensorless Control of BLDC Motor using d-q Synchronously Rotating Reference Frame Concept)

  • 문종주;허홍준;김장목
    • 전력전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.232-238
    • /
    • 2015
  • A sensorless control algorithm of brushless DC (BLDC) motors with a model current based on 120 degree conduction mode is proposed in this paper. The rotor speed and position can be estimated using the current model of BLDC motor, which is a modified version of the conventional current model of permanent magnet synchronous motor. The rotor speed and position can be obtained using the difference of the actual current and the model current. The position error caused by the parameter errors of the model current is compensated using a PI controller and the feedback loop of the real current. The validity of the proposed sensorless control algorithm is verified through simulation.

A Study on Low-Cost Sensorless Drive of Brushless DC Motor for Compressor Using Random PWM

  • Shin, Duck-Shick;Kim, Dae-Kyong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권1호
    • /
    • pp.91-96
    • /
    • 2013
  • Recently, it is increased to apply sensorless drive for BLDC (Brushless DC) motor to household electrical appliances, especially in the refrigerators and air conditioners, to reduce the cost and the acoustic noise by the operation and to make their functions more comfortable for human beings. In this paper, low-cost sensorless drive for BLDC motor is implemented by random PWM (Pulse Width Modulation). The experimental results show that the electromagnetic noise was reduced and the sound quality was improved by BLDC motor sensorless random PWM Control.

단상 BLDC 전동기의 토오크 리플 저감을 위한 공극 설계 (Design of Air Gap for Reducing Torque Ripple in a Single-Phase BLDC Motor)

  • 양병렬;권병일;박승찬
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권2호
    • /
    • pp.49-54
    • /
    • 2002
  • Most single-Phase brushless DC (BLDC) motors have unequal air gap to eliminate the dead-point where the developed torque value is zero. However this partial increase of the air gap deteriorates the motor characteristics in cogging torque. Thus in this paper a new topology of unequal air gap is proposed to solve this problem. The topology is to use some pairs of equal or unequal air gaps. As a result, it is proved by the finite element analysis and experimental results that the single-Phase BLDC motor with the proposed air gap topology is very effective in reducing the cogging torque.

Brushless DC Motor 의 강인한 궤환 선형화 제어 (A Robust Feedback Linearizing Control of BLDC Motor)

  • 정세교;백인철;김현수;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.282-284
    • /
    • 1995
  • A robust nonlinear control technique for brushless DC(BLDC) motors is presented using a feedback linearizing technique. The nonlinear model of the BLDC motor is first linearized far the exactly known system by an input-output linearizing method. Then, the robust control is designed for the unknown parts of the system using the Lypunov second method. By employing the proposed control scheme, the a robust control performance against the parameter uncertainties is obtained and therefore a robust feedback linerizing control of the BLDC motor is realized. The effectiveness of the proposed control scheme is well demonstrated through the comparative simulations.

  • PDF