• Title/Summary/Keyword: BLD 모터

Search Result 2, Processing Time 0.017 seconds

A Study on Reliability Improvement of BLDC Motor for Combat Vehicle in High Temperature Environment (고온 환경에서의 전투차량용 BLDC 모터 신뢰성 향상에 관한 연구)

  • Yoon, Hyo-Jin;Nam, Yoon-Wook;Park, Kyoung-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.97-102
    • /
    • 2018
  • Combat vehicles require high levels of maneuverability, firepower, armor, and operability. A high-performance power system is required for optimal maneuverability. The fuel pump which supplies fuel stably is very important to achieve this. The fuel pump consists of a pump part, a motor part, and a control part. It is equipped with a BLDC motor. Numerous failures of the fuel pump occurred during vehicle operation when exposed to vibration, shock, and high temperature. The cause of failure was confirmed to be stator slip of the BLDC motor. Stator slip is a consequence of the interference loss between the stator and the housing of the motor part in an high temperature environment. The failure of the fuel pump was solved through size control of the motor housing and the stator. We performed vibration testing at high temperature for verification. This study contributes to improving the reliability of combat vehicles.

Study on Temperature and Vibration of BLDC Motor (BLDC 모터의 온도 및 진동 특성 연구)

  • Ye, Jung-Woo;Son, Mun-Gyu;Choe, Myoung-Hwan;Kim, Dae-Hwa;Cho, Yeon-Su;Lee, Hyun-Seok;Shim, Jae-Sool
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.43-51
    • /
    • 2014
  • In this paper, transient temperature and vibration characteristics of a brushless DC (BLD(c) motor are studied for external load (165W~495W) and rotational speed (2000 rpm~4000 rpm). For experiment, a simple measurement system is developed to allow a change in load and speed for measuring transient temperature and vibration simultaneously. Temperature and vibration were also measured under the conditions of natural convection and forced convection. Vibrations in the directions of x-axis (#Ch1), y -axis (#Ch2) and z -axis (#Ch3) were obtained by three accelerometers and temperature was obtained by a thermo-couple with respect to time until the motor is steady. Experimental results show that the amplitude of vibration is higher in the order of z-axis (#Ch3), x -axis (#Ch1) and y-axis (#Ch2) and the amplitude of vibration at the forced convection conditions is 10.6% to 17.8% lower than that of vibration at the natural convection. However, the ratio of the vibration value is similar on average regardless of external convection condition.