• Title/Summary/Keyword: BIW

Search Result 24, Processing Time 0.018 seconds

Porosity Reduction during Gas Tungsten Arc-Gas Metal Arc Hybrid Welding of Zinc Coated Steel Sheets (II) - Hybrid Welding Results (GTA-GMA 하이브리드공정에 따른 자동차용 아연도금강판의 용접부 기공감소 (II) - 하이브리드공정 적용 결과)

  • Ahn, Young-Nam;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The use of Zn coated steel has increased in the automotive industry due to its excellent corrosion resistance. Conventionally the BIW(body-in-white) structure and the hang-on parts have been made of Zn coated steel and more recently Zn coated steel began to be applied in the chassis parts. During gas metal arc (GMA) welding of the chassis part, lap fillet joint used to be adopted but spatter generation and porosities are most important concerns. In the industrial applications, an intentional joint gap was made to avoid the weld defects but it is not easy to control the size of joint gap. In this research, gas tungsten arc (GTA) is combined with GMA welding where GTA precedes GMA. As pulsed arc was adopted as GMA, GTA was oscillated along the longitudinal direction by pulsing GMA, but the arc oscillation did not disturb the molten droplet transfer of GMA welding. By increasing the distance between GTA and GMA, the length of weld pool increased and porosity could be reduced. Moreover porosity in the welds was fully removed when the distance between two arcs was 15 mm.

Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology (자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술)

  • Chang, InSung;Cho, YongJoon;Park, HyunSung;So, DeugYoung
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.

Evaluation and solution of noise making weldment in automotive body (차체 이음 유발 용접 불량에 대한 분석과 해결 방안)

  • Cho, Jungho;Lee, Jungjae;Bae, Seunghwan;Lee, Yongki;Park, Kyungbae;Kim, Yongjun;Moon, Semin
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.18-22
    • /
    • 2015
  • The importance of emotional quality of car is getting higher in these days. Noise takes great portion in emotional quality because it is detectable problem with just a few rides. The sources of car noise during operation are various and the related technical issues are vast. Sometimes weldments of auto body are referred as the source of noise and the suspicious weldment shows unsatisfactory welding quality in most cases. In this research, cases of noise making weldments are investigated to figure out the solution for welding quality improvement. They are categorized into several groups in according to the inferred types of the error source then appropriate solutions are suggested. Auto body has weldments of resistance spot welding and gas metal arc welding in general. Therefore the solutions are suggested as adjustment of welding process variables and related machineries. Inevitable error source is also referred which is originated from thermal expansion rate difference between ultra high strength steel and mild steel. This new approach is validated through simple calculation then more concrete investigation with numerical analysis is remained as further works to be done.

Statistical Estimates from Black Non-Hispanic Female Breast Cancer Data

  • Khan, Hafiz Mohammad Rafiqullah;Ibrahimou, Boubakari;Saxena, Anshul;Gabbidon, Kemesha;Abdool-Ghany, Faheema;Ramamoorthy, Venkataraghavan;Ullah, Duff;Stewart, Tiffanie Shauna-Jeanne
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8371-8376
    • /
    • 2014
  • Background: The use of statistical methods has become an imperative tool in breast cancer survival data analysis. The purpose of this study was to develop the best statistical probability model using the Bayesian method to predict future survival times for the black non-Hispanic female breast cancer patients diagnosed during 1973-2009 in the U.S. Materials and Methods: We used a stratified random sample of black non-Hispanic female breast cancer patient data from the Surveillance Epidemiology and End Results (SEER) database. Survival analysis was performed using Kaplan-Meier and Cox proportional regression methods. Four advanced types of statistical models, Exponentiated Exponential (EE), Beta Generalized Exponential (BGE), Exponentiated Weibull (EW), and Beta Inverse Weibull (BIW) were utilized for data analysis. The statistical model building criteria, Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) were used to measure the goodness of fit tests. Furthermore, we used the Bayesian approach to obtain the predictive survival inferences from the best-fit data based on the exponentiated Weibull model. Results: We identified the highest number of black non-Hispanic female breast cancer patients in Michigan and the lowest in Hawaii. The mean (SD), of age at diagnosis (years) was 58.3 (14.43). The mean (SD), of survival time (months) for black non-Hispanic females was 66.8 (30.20). Non-Hispanic blacks had a significantly increased risk of death compared to Black Hispanics (Hazard ratio: 1.96, 95%CI: 1.51-2.54). Compared to other statistical probability models, we found that the exponentiated Weibull model better fits for the survival times. By making use of the Bayesian method predictive inferences for future survival times were obtained. Conclusions: These findings will be of great significance in determining appropriate treatment plans and health-care cost allocation. Furthermore, the same approach should contribute to build future predictive models for any health related diseases.