• 제목/요약/키워드: BIM-based Cost Take-Off

검색결과 30건 처리시간 0.027초

BIM 기반의 공간객체를 이용한 물량산출 정확성 분석 (An Accuracy Analysis on Quantity Take-off Using BIM-based Spatial Object)

  • 차유나;김성아;진상윤
    • 한국BIM학회 논문집
    • /
    • 제4권4호
    • /
    • pp.13-23
    • /
    • 2014
  • After being introduced, Building Information Modeling (BIM) has been actively applied to the cost estimation of construction projects, and various studies on BIM based quantity take-off have been carried out. In practice, however, these calculations take considerable time, because BIM based quantity take-off is further conducted along with 2D-based quantity take-off. Studies on the quantity take-off using BIM spatial objects have been carried out on early stages of projects, but how this method differs from the existing quantity take-off method and how accurate it is in comparison have rarely been verified. Therefore, by comparing 2D based quantities with quantities through BIM spatial objects, this study analyzed the accuracy of quantity take-off using BIM spatial objects. To this end, the properties of BIM spatial objects and quantity calculable spatial types were analyzed, and existing 2D-based quantities and quantities extracted from BIM spatial objects were compared through a case study. As a result, the quantity of spatial objects found to be more by about 7.13% in 0.05% and therefore, this difference should be considered during quantity take-off using BIM spatial objects. Through the results of this study, we can improve the accuracy of quantity take-off using BIM spatial objects in the early stage of a construction project.

Surface 및 Solid 방식의 비교를 통한 Parametric 기법의 토공물량산출 방법 (Parametric Quantity Take-Off of Earthwork by Comparing the Use of Surface and Solid Models)

  • 황희석;이재홍;김태영
    • 한국BIM학회 논문집
    • /
    • 제8권1호
    • /
    • pp.56-62
    • /
    • 2018
  • There exists no precedented case of quantity take-off, using parametric modeling, from BIM-based irregular structures. Civil 3D provides earthwork quantity take-off based on surface modeling. Generally, designers should enter data into the specification additionally after extracting quantity estimation from earthwork modeling design. The objective of this report is to suggest the method from quantity take-off to specification of BIM-based earthwork quantities. We intend to investigate earthwork take-off method by Civil3D and explain why parametric information extraction is required for quantity estimation and specification and how information of earthwork quantity based on solid and surface modeling is connected to open quantity take-off module. It is highly expected that this suggestion would be the practical methodology of earthwork quantity take-off and specification in the field of civil engineering.

BIM 기반 물량 산출의 정확성 검증 - 마감공사 공종을 중심으로 (A Verification of the Accuracy in BIM-Based Quantity Taking-Off - Focusing on Finishing Work)

  • 김지현;윤수원
    • 한국BIM학회 논문집
    • /
    • 제3권2호
    • /
    • pp.1-9
    • /
    • 2013
  • Currently, various studies and applications related BIM based quantity take-off have been attempted, because of the accuracy of cost estimating and reliability by using the BIM model information in automatical calculation. Finishing works that have a large number of various types and materials need the higher accuracy and reliability on the BIM-based quantity take-off. Therefore, this study compared and analyzed 2D and 3D based quantity through Test-bed and determine the cause of the quantity difference. This verified the accuracy and efficiency in the BIM-based quantity take-off for finishing works. Also this study has been proposed opinions for calculating the exact BIM-based quantity take-off.

How Much Discrepancy Can Happen from BIM-based Quantity Take?

  • Kim, Seong-Ah;Chin, Sangyoon
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.263-267
    • /
    • 2015
  • Stakeholders of a construction project expect cost savings through fast and accurate cost analysis by performing BIM-based quantity take-off (BQT). However, authors have observed that there can be discrepancies in the results of BQT depending on the level of development (LOD) and modeling methods. In addition, since quantity take-off methods are different depending on the construction work items, the combination of LOD, modeling methods of BIM, features of construction work items can cause serious overestimate or underestimate in BQT results. It is necessary to identify what kind of problems can happen and how those problems can be avoided in various construction work items, since the discrepancy of quantity take-off results has great impact on not only cost analysis but also the determination of contract amount and it can cause claims, poor construction quality, cost overruns, and many others later in the construction project. Therefore, this paper focuses the identification of issues and problems of BQT at each construction work item level based on two categorizations of structural works and interior works.

  • PDF

개방형BIM기반의 건축공사 개산견적을 위한 물량산출 적용지침 활용방안 기초 연구 (A Basic Study on an Application of Quantity Take-Off Requirements for Open BIM-based Schematic Estimation of Architectural Work)

  • 김인한;엄성곤;최중식
    • 한국CDE학회논문집
    • /
    • 제20권2호
    • /
    • pp.182-192
    • /
    • 2015
  • In recent years, numerous studies have attempted to extract quantity data by using Building Information Modeling (BIM). In terms of open-BIM based quantity take-off at the early design stage, only few studies were conducted in the field of cost engineering. A lack of compatibility of open BIM for information exchange is postulated as the cause. The Industry Foundation Classes (IFC) extension model has been developed to accommodate the interoperability with quantity take-off software. Improvement of open BIM for quantity take-off needs exchange requirements and model guidelines. For this purpose, the quantity data of IFC models were analyzed using BIM analysis tools. This paper also provides a proposal of requirements on open BIM based quantity take-off at the early design stage. Further this study have been develop the interface system for open BIM based quantity take-off requirements with the results on this study.

BIM 기반 비선정 작업항목 물량산출 방법에 관한 연구 (Quantity Takeoff for Non-Selection Work Items based on BIM)

  • 박상헌;윤선재;구교진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.92-93
    • /
    • 2019
  • Estimates based on BIM makes it possible to perform from quantity take-off to construction cost estimates by using model, which is made in the phase of design and construction. As the BIM models are made up of the units of element, there an advantage of the automative quantity take-off, if the correction or change of element occurs. Work items, not included in the elements of the BIM model, are excepted from bill of quantity. Level of detail(LoD) of the BIM model can be improved for detailed estimates, but an excessive modeling for estimates is inefficient. This study presents the measure for selection and quantity take-off of work items, those are not expressed in the BIM model. The proposed method avoids the creation of excessive BIM Models and enables quantity take-off in conjunction with the element.

  • PDF

CRITICAL FACTORS FOR ASSESSMENT OF BIM BASED QUANTITY-TAKE OFF

  • Seong-Ah Kim;Chang-Hee Lee ;Sangyoon Chin;Cheolho Choi
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.7-11
    • /
    • 2011
  • Quantity take-off (QT) is one of the most important tasks for determining the total cost of a construction project, and it requires accuracy and reliability for the result. Accuracy and reliability in BIM-based QT are also required to assure the completeness of the result. However, there has been no basis to measure the completeness of the BIM-based QT result. As BIM is increasingly being adopted in the construction industry with a wide variety of purposes, it becomes more important to have a method to improve the completeness of BIM-based QT and criteria to measure it. This research focuses on the hypothesis that the completeness of BIM-based QT relies on the accuracy and reliability of BIM and the BIM-based QT process. As a basic research to determine the completeness of BIM-based QT, this research analyzes and derives factors that affect the completeness of BIM-based QT.

  • PDF

BIM기반 철근콘크리트구조의 물량산출 비교 (A Comparison of Quantity Take-Offs of RC Structures based on BIM)

  • 윤종덕;조현식;이재홍;신재용;김은석
    • 한국전산구조공학회논문집
    • /
    • 제33권1호
    • /
    • pp.35-44
    • /
    • 2020
  • 최근 건설업계에서 설계시의 수량산출 및 예정공사비의 정확도에 대한 요구가 높아지고 있으며, 설계변경 시에 즉각적인 물량의 변화와 공사비의 변화를 파악하는 것이 중요한 이슈가 되고 있다. 또한, 수량과 공사비와 관련한 각종 소송들이 빈번하게 발생하면서 이를 해결하기 위한 방안으로 BIM기반의 물량산출 및 견적이 대안으로 등장하였다. 그러나 현재 BIM기반의 물량산출 및 견적은 2D 기반의 기존 방식보다 활용이 원활하지 못하다. 이는 물량산출 및 내역에 대한 국가적인 표준이나 기준이 마련되어 있지 못하고, 산출 작업자의 경험이 중요한 요소로 작용하기 때문이다. 하지만, 이는 견적의 관점이고 설계자의 관점에서 BIM을 이용한 즉각적이고 비교적 정확도가 우수한 수량과 공사비의 파악이 예산에 맞는 설계를 진행하기 위하여 필요하다. 본 연구에서는 서울시 ◯◯타운 생활관의 철근콘크리트 구조의 콘크리트, 철근, 거푸집의 수량을 사례로 2D기반의 설계수량과 BIM을 기반으로 한 계획설계, 실시설계 시의 수량과 실제 시공수량을 비교·분석하고 차이가 발생하는 원인을 분석하여 향후 설계자 관점에서 BIM기반의 수량산출에 도움이 되고자 하였다.

A Development of Unified and Consistent BIM Database for Integrated Use of BIM-based Quantities, Process, and Construction Costs in Civil Engineering

  • Lee, Jae-Hong;Lee, Sung-Woo;Kim, Tae-Young
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.127-137
    • /
    • 2019
  • In this study, we have developed a calculation system for BIM-based quantities, 4D process, and 5D construction costs, by integrating object shape attributes and the standard classification system which consist of Cost Breakdown System(CBS), Object Breakdown System(OBS) and Work Breakdown System(WBS) in order to use for the 4 dimensional process control of roads and rivers. First, a new BIM library database connected with the BIM library shape objects was built according to the CBS/OBS/WBS standard classification system of the civil engineering field, and a integrated database system of BIM-based quantities, process(4D), and construction costs(5D) for roads and rivers was constructed. Nextly, the process classification system and the cost classification system were automatically disassembled to the BIM objects consisting of the Revit-family style elements. Finally, we added functions for automatically generating four dimensional activities and generating a automatic cost statement according to the combination of WBS and CBS classification system The ultimate goal of this study was to extend the integrated quantities, process(4D), and construction costs(5D) system for new roads and rivers, enabling the integrated use of process(4D) and construction costs(5D) in the design and construction stage, based on the tasks described above.

BIM 기반 견적 산출을 위한 공종별 BIM 데이터 구축 및 연계 방안 - 세종특별자치시 공동주택 경제성 평가 사례 연구 - (BIM-based cost estimation by integration with BIM mdel data and cost information - Case Study on Economy Evaluation of Apartment in Sejong Special Self-Governing city -)

  • 이해찬;김진만;최철호;송상훈
    • 한국BIM학회 논문집
    • /
    • 제7권3호
    • /
    • pp.11-20
    • /
    • 2017
  • BIM technology, which is widely used in the construction industry, has been introduced in various fields for the purpose of saving construction cost and reducing construction schedule. However, in the case of BIM-based cost estimate, there are various trials and errors in applying BIM technology which can be applied for calculating quantity and cost estimate. BIM-based cost estimate can improve the quantity accuracy and allow to easy modifications that were not expected in 2D-based construction process. However, for this purpose, it is necessary to take into consideration that interoperability between BIM data and cost information should be planed in advance. Besides, the definition of a BIM data specification is also required for the seamless data exchange and integrity in each phase of the construction process. Therefore, in this study, we propose a BIM - based cost estimation method and technology in each type of work applicable to the current domestic construction industry.