• 제목/요약/키워드: BIM implementation process

검색결과 45건 처리시간 0.019초

DEVELOPMENT OF BUILDING INFORMATION MODEL FOR RESOURCES OPTIMIZATION IN CONSTRUCTION PROJECT

  • Gopal M. Naik;Rokhsareh Badamahgan
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.634-639
    • /
    • 2013
  • The aim of the study is to develop the 3D visualization of Building Information Model and integrated 4D model for optimization of resources in the construction project. This study discuss the process of methodology and creation of 4D model of the project and simulate it to monitor the workflow at the site. Different stages of the construction process and activities are generated by using Revit and MS Project. MS project has been used for creation of the schedules and these are linked with the Revit for 3D modeling. The time used as the fourth dimension and 4D model created by using Navisworks Time liner software. Narges shopping center is presented as a case study to realize the actual uses and benefits of Building Information Model (BIM). Narges shopping mall is located in Tehran, Iran. As a part of Hekmat master plan, Narges shopping center is an 11 stores building with a total area of 30000 Sq.m. This shopping and entertainment center is comprised of 150 retails and two multi-use public halls with a capacity of 400 persons each and underground parking with total 400 parking space. The main purpose of architecture was to create an urban public center along with its revolving, spiral like form and an ever changing continuous façade by means of different colors, materials, which is in harmony with the other building of the master plan. The approximate cost of the project is $17 million and duration of the project schedule is 30 months. The developed Building Information Model enabled us to identify the potential collisions or clashes between various structural and architectural systems. 4D model has been used for limiting the interaction between subcontractors installing the different systems so rework could be avoided and productivity maximized. It is also observed that the utility of BIM for construction stimulation and clash detection is the best suitable method. Clash detection before the implementation of work is highly recommended to avoid rework.

  • PDF

Generating a Simplistic 3D Model for Mobile Platform Applications

  • Ahmed, Naveed;Park, Jee Woong;Morris, Brendan
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1093-1099
    • /
    • 2022
  • The number of buildings is increasing day by day. The next logical footstep is tackling challenges regarding scarcity of resources and sustainability, as well as shifting focus on existing building structures to renovate and retrofit. Many existing old and heritage buildings lack documentation, such as building models, despite their necessity. Technological advances allow us to use virtual reality, augmented reality, and mixed reality on mobile platforms in various aspects of the construction industry. For these purposes, having a BIM model or high detail 3D model is not always necessary, as a simpler model can serve the purpose within many mobile platforms. This paper streamlines a framework for generating a lightweight 3D model for mobile platforms. In doing so, we use an existing structure's site survey data for the foundation data, followed by mobile VR implementation. This research conducted a pilot study on an existing building. The study provides a process of swiftly generating a lightweight 3D model of a building with relative accuracy and cost savings.

  • PDF

3D WALK-THROUGH ENVIRONMENTAL MODEL FOR VISUALIZATION OF INTERIOR CONSTRUCTION PROGRESS MONITORING

  • Seungjun Roh;Feniosky Pena-Mora
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.920-927
    • /
    • 2009
  • Many schedule delays and cost overruns in interior construction are caused by a lack of understanding in detailed and complicated interior works. To minimize these potential impacts in interior construction, a systematic approach for project managers to detect discrepancies at early stages and take corrective action through use of visualized data is required. This systematic implementation is still challenging: monitoring is time-consuming due to the significant amount of as-built data that needs to be collected and evaluated; and current interior construction progress reports have visual limitations in providing spatial context and in representing the complexities of interior components. To overcome these issues, this research focuses on visualization and computer vision techniques representing interior construction progress with photographs. The as-planned 3D models and as-built photographs are visualized in a 3D walk-through model. Within such an environment, the as-built interior construction elements are detected through computer vision techniques to automatically extract the progress data linked with Building Information Modeling (BIM). This allows a comparison between the as-planned model and as-built elements to be used for the representation of interior construction progress by superimposing over a 3D environment. This paper presents the process of representing and detecting interior construction components and the results for an ongoing construction project. This paper discusses implementation and future potential enhancement of these techniques in construction.

  • PDF

Implementation of CNN-based Masking Algorithm for Post Processing of Aerial Image

  • CHOI, Eunsoo;QUAN, Zhixuan;JUNG, Sangwoo
    • 한국인공지능학회지
    • /
    • 제9권2호
    • /
    • pp.7-14
    • /
    • 2021
  • Purpose: To solve urban problems, empirical research is being actively conducted to implement a smart city based on various ICT technologies, and digital twin technology is needed to effectively implement a smart city. A digital twin is essential for the realization of a smart city. A digital twin is a virtual environment that intuitively visualizes multidimensional data in the real world based on 3D. Digital twin is implemented on the premise of the convergence of GIS and BIM, and in particular, a lot of time is invested in data pre-processing and labeling in the data construction process. In digital twin, data quality is prioritized for consistency with reality, but there is a limit to data inspection with the naked eye. Therefore, in order to improve the required time and quality of digital twin construction, it was attempted to detect a building using Mask R-CNN, a deep learning-based masking algorithm for aerial images. If the results of this study are advanced and used to build digital twin data, it is thought that a high-quality smart city can be realized.

Development of an Algorithm for the Automatic Quantity Estimation of Wall Rebar

  • Kim, Do-Yeong;Suh, Sangwook;Kim, Sunkuk;Lwun Poe Khant
    • 한국건설관리학회논문집
    • /
    • 제24권5호
    • /
    • pp.83-94
    • /
    • 2023
  • In order to devise a rebar usage optimization algorithm, it is necessary to calculate the exact rebar length and revise the arrangement of rebars into special lengths. However, the process of rearranging numerous rebars and manually calculating their quantities is time-consuming and requires significant human resources. To address this challenge, it is necessary to develop an algorithm that can automatically estimate the length of rebars and calculate their quantities. This study aims to create an automatic estimation algorithm that improves work efficiency while ensuring accurate and reliable calculations of rebar quantities. The algorithm considers various factors such as concrete cover, hook length, development length, and lapping length, mandated by the building codes, to calculate the quantity of rebars for wall structures. The effectiveness of the proposed method is validated by comparing the rebar quantities generated by the algorithm with manually calculated quantities, resulting in a difference rate of 1.14% for the hook case and 1.37% for the U-bar case. The implementation of this method enables fast and precise estimation of rebar quantities, adhering to relevant regulatory codes.