• Title/Summary/Keyword: BIM database

Search Result 65, Processing Time 0.032 seconds

Development of KBIMS Architectural and Structural Element Library and IFC Property Name Conversion Methodology (KBIMS 건축 및 구조 부재 라이브러리 및 IFC 속성명 변환 방법 개발)

  • Kim, Seonwoo;Kim, Sunjung;Kim, Honghyun;Bae, Kiwoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.505-514
    • /
    • 2020
  • This research introduces the method of developing Korea BIM standard (KBIMS) architectural and structural element library and the methodology of converting KBIMS IFC property names with special characters. Diverse BIM tools are utilizing in project, however BIM library researches lack diversity on BIM tool selection. This research described the method to generate twelve categories and seven hundred and ninety-three elements library containing geometrical and numerical data in CATIA V6. KBIMS has its special property data naming systems which was the challenge inputting to ENOVIA IFC database. Three mapping methods for special naming characters had been developed and the ASCII code method was applied. In addition, the convertor prototype had been developed for searching and replacing the ASCII codes into the original KBIMS IFC property names. The methodology was verified by exporting 2,443 entities without data loss in the sample model conversion test. This research would provide a wider choice of BIM tool selection for applying KBIMS. Furthermore, the research would help on the reduction of data interoperability issues in projects. The developed library would be open to the public, however the continuous update and maintenance would be necessary.

Analysis of Modeling Errors for BIM-based Facility Management Systems (BIM기반 시설물유지관리시스템을 위한 모델링 오류 분석)

  • An, Hyokyung;Lee, Seulki;Yu, Jungho;Son, Bosik;Jang, Hyounseung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.35-45
    • /
    • 2013
  • Facility Management is the longest in the building of life cycle. Because it occupies more than 80% of cost, the phase of Facility Management has to be managed and has to be perceived as important as design and construction phase. The method to manage building more efficiently is the introduction of Facility Management System used by CAD and database. But information Requirement is now input by hand in the most Facility Management System. This study aims to analyze the example of applying BIM in the Korea or abroad and the errors of this were deducted by many phase. Lastly, the possible solution is suggested in order to be used in the Facility Management System. This study's benchmarking is COBIE which is developed by the COE(Corps of Engineers) and now popular in the world. The suggestion in this study is the method that I have already mentioned is helpful for a designer to do modeling when a designer uses BIM S/W(software). To be more specific, the method plays a side role in helping data input considering the phase of Facility Management.

A Framework of Building Knowledge Representation for Sustainability Rating in BIM

  • Shahaboddin Hashemi Toroghi;Tang-Hung. Nguyen;Jin-Lee. Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.437-443
    • /
    • 2013
  • Recently, sustainable building design, a growing field within architectural design, has been emerged in the construction industry as the practice of designing, constructing, and operating facilities in such a manner that their environmental impact, which has become a great concern of construction professionals, can be minimized. A number of different green rating systems have been developed to help assess that a building project is designed and built using strategies intended to minimize or eliminate its impact on the environment. In the United States, the widely accepted national standards for sustainable building design are known as the LEED (Leadership in Energy and Environmental Design) Green Building Rating System. The assessment of sustainability using the LEED green rating system is a challenging and time-consuming work due to its complicated process. In effect, the LEED green rating system awards points for satisfying specified green building criteria into five major categories: sustainable sites, water efficiency, energy and atmosphere, materials and resources, and indoor environmental quality; and sustainability of a project is rated by accumulating scores (100 points maximum) from these five major categories. The sustainability rating process could be accelerated and facilitated by using computer technology such as BIM (Building Information Modeling), an innovative new approach to building design, engineering, and construction management that has been widely used in the construction industry. BIM is defined as a model-based technology linked with a database of project information, which can be accessed, manipulated, and retrieved for construction estimating, scheduling, project management, as well as sustainability rating. This paper will present a framework representing the building knowledge contained in the LEED green building criteria. The proposed building knowledge framework will be implemented into a BIM platform (e.g. Autodesk Revit Architecture) in which sustainability rating of a building design can be automatically performed. The development of the automated sustainability rating system and the results of its implementation will be discussed.

  • PDF

A Preliminary Study of Prototype for Improving VE Workshop Phase based on BIM (BIM 기반 VE 워크샵 단계의 업무 향상을 위한 프로토타입 개발에 관한 기초연구)

  • Kim, Hojun;Park, Heetaek;Park, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.3
    • /
    • pp.113-122
    • /
    • 2015
  • VE workshop is performed based on VE expert' experiences without retrieving VE data of similar previous projects. Moreover, it usually omitted or applied for the sake of formality due to insufficiently understanding VE function, limited time, space and budget. Even though many studies have established VE databases for retrieving and reusing VE data, VE workshop is still inefficient and ineffective to improve projects' values. With this regard, this study proposes a preliminary prototype for improving VE workshop, which utilizes the state-of-the-art information communication technologies(ICTs) including Building Information Modeling(BIM), Mobile Computing(MC), Network Service System(NSS), and Database Management System(DBMS) for better managing, storing and reusing VE data. The prototype was developed to evaluate advantages and limitations. The results show that the proposed prototype can support visual VE data retrieval from similar previous projects, enhance communication among VE team and save much time and cost comparing to traditional VE. Through this, the productivity of VE workshop can improve efficiently and effectively.

A Study on utilizing 3D model to input and display the information of structural inspection (3D 객체 모델을 활용한 점검 정보입력 및 표출에 관한 연구)

  • Jang, Jeong-Hwan;An, Ho-Hyun;Park, Sang Deok;Kang, Dong-Hyun
    • Journal of KIBIM
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • In general, a two-dimensional platform were used to manage the structural inspection information. But we performed a study on utilizing 3D model to input and display the information of structure inspection. Coarse and Fine model of structure were used to input the information. 3D model combined with database built from record plan and field inspections data and rating will provide more intuitive and effective environment for inspectors in bridge maintenance.

Development of Green Template for Building Life Cycle Assessment Using BIM (건축물 LCA를 위한 BIM 친환경 템플릿 개발에 관한 연구)

  • Lee, Sung Woo;Tae, Sung Ho;Kim, Tae Hyoung;Roh, Seung Jun
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • The purpose of this study is to develope BIM Template according to major building material for efficiently and quantitatively evaluating greenhouse gas emission at the design stage. Template users consider various environmental impacts without connecting simulation tools for analyzing environmental impact and Template users who have no prior knowledge can Life Cycle Assessment by using The green template. For this study, Database which was reflected in template was constructed considering environmental performance. and 6 kinds of environmental impact categories and PPS standard construction codes were analyzed by major building material derived from literature. Based on this analyzed data, The major Material Family according to the main building material was developed. When users conduct modeling by utilizing Family established, evaluating result can be confirmed in the Revit BIM Modeling program by using the schedule function of the Revit. Users through the modeling, the decision-making environment performance possible. In addition, we propose to create a guideline for the steps required to build an additional established family.

A Study on the Development and Utilization of Indoor Spatial Information Visualization Tool Using the Open BIM based IFC Model (개방형 BIM 기반 IFC 모델을 이용한 실내공간정보 시각화 도구개발 및 활용방안 연구)

  • Ryu, Jung Rim;Mun, Son Ki;Choo, Seung Yeon
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.41-52
    • /
    • 2015
  • MOLIT (Minister of Land, Infrastructure and Transport) authorized Indoor Spatial Information as Basic spatial information in 2013. It became a legal evidence for constructing and managing Indoor Spatial Information. Although it has a little advantage to utilize as service level that Indoor Spatial Information by laser scan or measurement, it has a lot of problems such as consuming many resources, requiring additional progresses for inputting Object Information. In conclusion, it is inefficient to utilize for the maintenance and domestic AEC/FM field. The purposes of this study is to output Indoor Spatial Information by operating IFC model which based on open BIM and to improve availability of Indoor Spatial Information with data visualization. The open-sources of IFC Exporter, a inner program of Revit (Autodesk Inc), is used to output Indoor Spatial Information. Directs 3D Library is also operated to visualize Indoor Spatial Information. It is possible to inter-operate between XML format and the objects of Indoor Spatial Information. It can be utilized in various field as well. For example COBie linkage in facility management, construction of geo-database using air-photogrammetry of UAV (Unmaned Areal Vehicle), the simulation of large-scale military operations and the simulation of large-scale evacuation. The method that is purposed in this study has outstanding advantages such as conformance with national spatial information policy, high level of interoperability as indoor spatial information objects based on IFC, convenience of editing information, light level of data and simplifying progress of producing information.

A Study on Detection of Abnormal Patterns Based on AI·IoT to Support Environmental Management of Architectural Spaces (건축공간 환경관리 지원을 위한 AI·IoT 기반 이상패턴 검출에 관한 연구)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.12-20
    • /
    • 2023
  • Deep learning-based anomaly detection technology is used in various fields such as computer vision, speech recognition, and natural language processing. In particular, this technology is applied in various fields such as monitoring manufacturing equipment abnormalities, detecting financial fraud, detecting network hacking, and detecting anomalies in medical images. However, in the field of construction and architecture, research on deep learning-based data anomaly detection technology is difficult due to the lack of digitization of domain knowledge due to late digital conversion, lack of learning data, and difficulties in collecting and processing field data in real time. This study acquires necessary data through IoT (Internet of Things) from the viewpoint of monitoring for environmental management of architectural spaces, converts them into a database, learns deep learning, and then supports anomaly patterns using AI (Artificial Infelligence) deep learning-based anomaly detection. We propose an implementation process. The results of this study suggest an effective environmental anomaly pattern detection solution architecture for environmental management of architectural spaces, proving its feasibility. The proposed method enables quick response through real-time data processing and analysis collected from IoT. In order to confirm the effectiveness of the proposed method, performance analysis is performed through prototype implementation to derive the results.

Development of Information & Communications Technologies Merged Municipal Government Bridge Maintenance System (ICT 융합 지자체 교량 유지관리 시스템개발)

  • Yun, Youngman
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.476-482
    • /
    • 2017
  • For the bridges managed by the municipalities, there is a need for a maintenance management system for the municipal governments for the scientific and systematic maintenance standard and the scientificization of the budget acquisition and execution through the quantified data base. The purpose of this study is to develop a system for efficient management of small bridgies maintained by the municipality and use ICT convergence technology such as BIM / GIS technology. The details of the system development include the development of the small bridgies maintenance program for mobile devices, the development of the small bridgies maintenance database, the development of the small bridgies integration maintenance management, and the reliability of the program system developed by checking the construction and operation contents of the small bridgies test-bed. The developed program system is linked to the development of smart name plate and reader module of non - power system.

Development of Artificial Neural Network Model for Prediction of Seismic Response of Building with Soil-structure Interaction (지반-상부 구조물 효과를 고려한 인공신경망 기반 지진 응답 예측 모델 개발)

  • Won, Jongmuk;Shin, Jiuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.7-15
    • /
    • 2020
  • Constructing the maximum displacement and shear force database for the seismic performance of building with soil-structure interaction under varied earthquake scenarios and geotechnical conditions is critical in developing the neural network-based prediction models. However, using the available 3D FEM-based computer simulation techniques causes high computation costs in developing the database. This study introduces the framework of developing the artificial neural network (ANN) model to predict the seismic performance of building at given Poisson's ratio and shear wave velocity of soil. The simple Single-Degree-Of-Freedom system was used to develop the database and the performance of the developed neural network model is discussed through the evaluated coefficient of determination (R2). In addition, ANN models were developed for 90~100% percentile of the database to assess the accuracy of the developed ANN models in each percentile.