• Title/Summary/Keyword: BIM Quantity Take-off

Search Result 61, Processing Time 0.021 seconds

Difference Factors Analysis of between Quantity Take-off Using BIM Model and Using 2D Drawings in Reinforced Concrete Building Frame (건물 골조수량 산출 시 BIM모델 기반 수량과 2D도면 기반 수량 차이 요인 분석)

  • Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.651-662
    • /
    • 2023
  • Recently, research on the use of Building Information Modeling(BIM) for various construction management activities is being actively conducted, and interest in 3D model-based estimation is increasing because it has the advantage of being able to be automatically performed using the attribute information of the 3D model. Therefore, this study aimed that the difference in the quantities is calculated the quantity based on the 2D drawing of a building and is extracted from the 3D model created by the Revit software was compared and tried to find out the cause. The difference in the quantity calculated by the two methods was the largest in the formwork, followed by the smallest in the order of the quantity of rebar and concrete. The reason for this difference is that there is a part where the quantity extraction in the 3D model is not suitable for the quantity calculation standard, and in particular, in the case of formwork, it was difficult to separate only the quantity of the necessary part. In addition, since the quantity of rebar was not separated by member, it was impossible to accurately compare the quantity and identify the cause of the difference. Therefore, it is considered to be the most reasonable to use application software that imports only the numerical information necessary for quantity calculation from the 3D model and applies a separate calculation formula.

Quantity Estimation Method for High-Performance Insulated Wall Panels with Complex Details Using BIM Family Libraries (BIM의 패밀리 라이브러리를 이용한 복잡한 상세를 갖는 고단열 벽체 판넬의 물량 산출 방법)

  • Mun, Ju-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.447-458
    • /
    • 2024
  • This study investigates the effectiveness of Building Information Modeling(BIM) software, specifically SketchUp and Revit, in reducing errors during quantity take-off(QTO) for complex building elements. While 3D modeling offers advantages, existing software may not fully account for manufacturing discrepancies, such as variations in concrete cover thickness and reinforcing bar radius. To address this limitation, this research proposes a BIM-based QTO method for high-insulation wall panels with intricate details. The method utilizes a BIM family library, focusing on key parameters like concrete cover thickness and inner radius of shear reinforcement. A case study compared the cross-sectional details of a wall panel modeled in Revit with the actual manufactured specimen. The analysis revealed a 12% reduction in modeled concrete cover thickness and a 1.27 times larger modeled inner radius of the shear bar compared to the real-world values. The proposed method incorporates these manufacturing variations into the Revit model of the high-insulation wall panel. Software like Navisworks facilitates the identification and correction of any material interferences arising from these adjustments. Furthermore, the method employs a unit wall concept(1m2) to account for the volume of various materials, including insulation and splice sleeves at joints. This allows for the identification of a similar existing family within the BIM library(e.g., "Double RC wall with embedded insulation") that reflects the actual material quantities used in the wall panel. By incorporating these manufacturing-induced variations, the proposed method offers a more accurate QTO process for complex high-insulation wall panels. The "Double RC wall with embedded insulation" family within the Revit program serves as a valuable tool for material quantity estimation in such scenarios.

Development of an Algorithm for Automatic Quantity Take-off of Slab Rebar (슬래브 철근 물량 산출 자동화 알고리즘 개발)

  • Kim, Suhwan;Kim, Sunkuk;Suh, Sangwook;Kim, Sangchul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.52-62
    • /
    • 2023
  • The objective of this study is to propose an automated algorithm for precise cutting length of slab rebar complying with regulations such as anchorage length, standard hooks, and lapping length. This algorithm aims to improve the traditional manual quantity take-off process typically outsourced by external contractors. By providing accurate rebar quantity data at BBS(Bar Bending Schedule) level from the bidding phase, uncertainty in quantity take-off can be eliminated and reliance on out-sourcing reduced. In addition, the algorithm allows for early determination of precise quantities, enabling construction firms to preapre competitive and optimized bids, leading to increased profit margins during contract negotiations. The proposed algorithm not only streamlines redundant tasks across various processes, including estimating, budgeting, and BBS generation but also offers flexibility in handling post-contract structural drawing changes. In particular, the proposed algorithm, when combined with BIM, can solve the technical problems of using BIM in the early phases of construction, and the algorithm's formulas and shape codes that built as REVIT-based family files, can help saving time and manpower.

Establishment of Rebar Quantity Estimation in BIM-based Initial Design Phase (BIM기반 초기 설계 단계 철근 물량 산출 프로세스 구축)

  • Song, Chi-Ho;Kim, Chee-Kyeong;Lee, Si Eun;Choi, Hyunchul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.447-454
    • /
    • 2016
  • In the meantime, looking at the present status of how to estimationte the quantity of rebar based on 3D BIM getting the limelight in these days, commercial BIM tools provide rebar modeling functions however it takes a vast amount of modeling time for modeling of rebar in use of that function hence there is no BIM software at present for practical use. Therefore, in this study, we organized and presented a practical rebar quantity estimationtion process in BIM-based design work-site and intended to develop a program named Rebar Automatic Arrangement Program - hereinafter called RAAP - which enables automatic rebar arrangement based on much more precise cross-sectional information of bars in column, beam, slab and wall than the one from existing 2D method under the conditions without any cross-sectional information in the initial design phase. In addition, we intended to establish rebar quantity estimationtion process in the initial design phase through interworking of modeling & quantity estimationtion functions in consideration of joint, anchoring length of BuilderHUB as a BIM software with RAAP. The results from this study are practical in developing a technology that is able to estimationte quantity with more improved reliability than the one from existing 2D-based methods with less effort when the quantity of framework is estimationted in the uncompleted state of cross-sectional design for structural members in the initial design phase of a construction project. And it is expected that it could be utilized as a basic study from which a reasonable quantity estimationtion program can be established in the initial design phase.

Development of A Prototype for Wall Formwork Designs using Open BIM (개방형 BIM을 활용한 벽체 거푸집설계 프로토타입 개발)

  • Jin, Chengquan;Kim, Hyunjoo;Hyun, Chang-Taek;Han, Sang-Won
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.3-13
    • /
    • 2018
  • The formwork cost amounts for a significant proportion of project construction costs. It costs 10-15% of the total construction cost and 30-40% of the frame structure construction cost. In addition, the formwork collapse accidents are frequently causing deaths in the construction industry, and thus, is known to be of relatively high degree of risk. As so, the accuracy of structural calculation and quantity take-off when planning the formwork in a construction project are a very important matter. Accordingly, this study develops a BIM based formwork design prototype, that enables the construction manager to optimize the design through applying the proposed new IFC entities associated with the formwork design. The approach proposed in this study is expected to support the construction manager with accurate quantity calculation and rapid planning and construction. Since this study considered specific small-scale buildings using Euro-form and show the possibility of utilizing BIM entities in the formwork design process, further research is recommended towards the limitations in applying the system to other types of formworks.

Evaluation on the Possibility of Connection Between IFC and Digital Quantity DataBase Exchange Standard (IFC와 디지털 수량산출정보 교환표준의 연계 가능성 평가)

  • Won, Ji-Sun;Moon, Jin-Seok;Choi, Won-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6488-6494
    • /
    • 2013
  • Recently, BIM has attracted attention as a technology to improve the construction productivity. The BIM standards to be applied to the BIM project are necessary for using or connecting the current 2D-based drawing standards. To develop the standard for BIM-based QTO and cost, this paper focused on using QDBEx, which was applied to road project cost management and connecting QDBEx with IFC, which is the BIM data delivery format. The IFC schema was evaluated to determine if it is possible to use the converts to the QDBEx XML file. As a result, 66% of the whole was available to connect directly, and 17% was available to connect through the processing of instance. The remaining 17% was evaluated to determine if it was available to connect. In the future, improvements in the schema will be suggested based on these results.

Development of Quantity Take-off Algorithm for Irregularly Shaped Structures using 3D Object (3D기반 비정형 토목구조물 물량산출 알고리즘 개발)

  • Ha, Cheol-Seok;Moon, So-Yeong;Moon, Hyoun-Seok;Kang, Leen-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.655-666
    • /
    • 2014
  • Recently, as the appearance and exterior design of the construction structure are highlighted, the irregularly shaped structures are increasing in a construction facility. Many softwares provide a quantity take-off function of 3D object under BIM environment, however, they are focused on the limited function based on the solid modeling method. Because the vast geometric information of the curved surface is difficult to extract in the 3D objects that consist of major changes in vertical section shape as the irregularly shaped structures, it is difficult to express a 3D object as a solid model. On the other hand, the irregularly shaped structures can be expressed in relatively free in the surface model because the surface model consists of points, lines and surfaces. Accordingly, the surface modeling method is suitable for the modeling of large irregularly shaped structures. This study suggests a quantity take-off algorithm for the irregularly shaped structures using the surface modeling approach that is beneficial in the design work of structures. Some case projects are used for verifying the accuracy of the proposed method.

Preparing a Construction Cash Flow Analysis Using Building Information Modeling (BIM) Technology

  • Kim, Hyunjoo;Grobler, Francois
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Construction is a competitive industry and successful contractors must be able to win bids to obtain projects. Cash flow analysis not only determines actual profit at the end of the project, but also estimates required cash resources or cash ballances at the end of every month. Cash flow analysis is important in managing a construction project; however, it requires extensive information that is not immediately available to the general contractor. Before contractors can perform cash flow analysis, they must first complete a series of pre-requisites such as the quantity take off, scheduling, and cost estimating, followed by accurate assessments of project costs incurred and billable progress made. Consequently, cash flow analysis is currently a lengthy, uncertain process. This paper suggests improved cash flow analysis can be developed using data extraction in Building Information Modeling (BIM). BIM models contain a wealth of information and tools have been developed to automate a series of process such as quantity takeoff, scheduling, and estimating. This paper describes a prototype tool to support BIM-based, automated cash flow analysis.

Schematic Estimation Process using Architectural Object BIM Library

  • Lee, Ji Yong;Kim, In Han;Choi, Jung Sik
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.289-293
    • /
    • 2015
  • The construction industry has been evolving with the development of information technology. According to this trend, the current industry changes from 2d drawings to Building Information Modeling(BIM). Current studies on the BIM-based estimation have problems such as Quantity Take-Off(QTO) specificity toward a particular software, the uncertainty of the amount in accordance with the model quality. These studies focus on QTO based on BIM rather than schematic estimation. In addition, studies on the connection with the QTO and unit cost for schematic estimation are insufficient. The purpose of this study is to propose schematic estimation process by utilizing construction codes and QTO in architectural object BIM libraries. Construction codes are classified in detail in order to input codes inside each. This study has connected unit cost and construction classification codes that obtain from BIM model. The results of this study will be helpful in decision-making and communication for schematic estimation of the design phase. It will improve the efficiency and reliability problems of existing schematic estimation.

  • PDF

Improvement of Quantity Take-Off and BoQ through the LOD Criteria Analysis of BIM Models (BIM 모델 표현 수준(LOD) 분석을 통한 내역체계 개선방안 연구)

  • Choi, Hyunjun;Yun, Seokheon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.89-97
    • /
    • 2019
  • Recently, BIM has been actively introduced in construction projects. In particular, the introduction of BIM in cost estimating process is expected to improve the accuracy and efficiency of the cost estimate. However, the quantity calculation and BoQ documents preparation process still require manual work. Although the BIM model may support quantification process, it is still problematic that the level of detail of the model must be very detailed to meet the items in BoQ. To address this, it is necessary to analyse the LOD criteria and to analyze the extent to which quantity can be computed according to the level of detail in the BIM model. For the analysis of LOD-based work items, the work item grades were divided into A,B, and C. In this study, the ratio and cost of each item that can be calculated at the LOD level in the detailed design phase are reviewed for each type of work, and the method for improving the quantity calculation using BIM is proposed. In the LOD 300 stage(Detailed design stage), the largest number of items in the class B, the major improvement class, are window and glass work. In addition, the most expensive type of work was analyzed by reinforced concrete work. In the future, it is necessary to suggest appropriate improvement way for items with high item ratios and items with high cost ratios. The results of this study are expected to be used as a BIM-based cost estimation or as basic data for improving the current BoQ system.