• 제목/요약/키워드: BIM활용

검색결과 501건 처리시간 0.022초

아파트 최적 배치 자동화 - Rhino Grasshopper를 활용한 parametric model의 최적화를 중심으로 - (Automation in Site Planning of Apartment Complex - Through Rhino Grasshopper's Parametric Modeling and Optimization -)

  • 성우제;정요한
    • 한국BIM학회 논문집
    • /
    • 제10권3호
    • /
    • pp.22-32
    • /
    • 2020
  • Apartment building site planning is one of time consuming and labor-intensive tasks in architectural design field, due to its complexity in zoning regulations, building codes, local restrictions, and site-specific conditions. In other words, the process can be seen as a very complicated mathematical function with layers of variables and parameters, which ironically can be automated using computational methods on parametric tools. In this paper, a practical method of automating site planning of an apartment complex has been proposed by utilizing parametric approaches in Rhino 3D and Grasshopper. Two primary parameters, building heights and positions, determine the efficacy of building layouts under all regulatory standards, thus testing out numerous combinations of the two will produce some successful layout alternatives. For this, equation solver has been used for iterating the parametric model to sort out meaningful results among others. It also has been proven that the proposed process significantly reduced the time in site planning down to less than an hour on most cases, and many successful alternatives could be obtained by using multiple computers. Post evaluation processes such as day light and view shed analysis helped sort out the best performing ones out of functioning alternatives.

인공지능 알고리즘을 활용한 건축 이미지 생성에 관한 연구 - 건축 스케치 기반의 실사 이미지 생성을 위한 기초적 연구 - (A Study on Architectural Image Generation using Artificial Intelligence Algorithm - A Fundamental Study on the Generation of Due Diligence Images Based on Architectural Sketch -)

  • 한상국;신동윤
    • 한국BIM학회 논문집
    • /
    • 제11권2호
    • /
    • pp.54-59
    • /
    • 2021
  • In the process of designing a building, the process of expressing the designer's ideas through images is essential. However, it is expensive and time consuming for a designer to analyze every individual case image to generate a hypothetical design. This study aims to visualize the basic design draft sketch made by the designer as a real image using the Generative Adversarial Network (GAN) based on the continuously accumulated architectural case images. Through this, we proposed a method to build an automated visualization environment using artificial intelligence and to visualize the architectural idea conceived by the designer in the architectural planning stage faster and cheaper than in the past. This study was conducted using approximately 20,000 images. In our study, the GAN algorithm allowed us to represent primary materials and shades within 2 seconds, but lacked accuracy in material and shading representation. We plan to add image data in the future to address this in a follow-up study.

GAN을 활용한 인테리어 스타일 변환 모델에 관한 연구 (A study of interior style transformation with GAN model)

  • 최준혁;이제승
    • 한국BIM학회 논문집
    • /
    • 제12권1호
    • /
    • pp.55-61
    • /
    • 2022
  • Recently, demand for designing own space is increasing as the rapid growth of home furnishing market. However, there is a limitation that it is not easy to compare the style between before construction view and after view. This study aims to translate real image into another style with GAN model learned with interior images. To implement this, first we established style criteria and collected modern, natural, and classic style images, and experimented with ResNet, UNet, Gradient penalty concept to CycleGAN algorithm. As a result of training, model recognize common indoor image elements, such as floor, wall, and furniture, and suitable color, material was converted according to interior style. On the other hand, the form of furniture, ornaments, and detailed pattern expressions are difficult to be recognized by CycleGAN model, and the accuracy lacked. Although UNet converted images more radically than ResNet, it was more stained. The GAN algorithm allowed us to represent results within 2 seconds. Through this, it is possible to quickly and easily visualize and compare the front and after the interior space style to be constructed. Furthermore, this GAN will be available to use in the design rendering include interior.

머신러닝을 활용한 어린이 스마트 횡단보도 최적입지 선정 - 창원시 사례를 중심으로 - (Machine Learning based Optimal Location Modeling for Children's Smart Pedestrian Crosswalk: A Case Study of Changwon-si)

  • 이수현;서용원;김세인;이재경;윤원주
    • 한국BIM학회 논문집
    • /
    • 제12권2호
    • /
    • pp.1-11
    • /
    • 2022
  • Road traffic accidents (RTAs) are the leading cause of accidental death among children. RTA reduction is becoming an increasingly important social issue among children. Municipalities aim to resolve this issue by introducing "Smart Pedestrian Crosswalks" that help prevent traffic accidents near children's facilities. Nonetheless such facilities tend to be installed in relatively limited number of areas, such as the school zone. In order for budget allocation to be efficient and policy effects maximized, optimal location selection based on machine learning is needed. In this paper, we employ machine learning models to select the optimal locations for smart pedestrian crosswalks to reduce the RTAs of children. This study develops an optimal location index using variable importance measures. By using k-means clustering method, the authors classified the crosswalks into three types after the optimal location selection. This study has broadened the scope of research in relation to smart crosswalks and traffic safety. Also, the study serves as a unique contribution by integrating policy design decisions based on public and open data.

일방향 지오데식을 활용한 곡면 형상의 패널링 - 복합 곡면을 중심으로 - (Paneling of Curved NURBS Surface through Marching Geodesic - Application on Compound Surface -)

  • 홍지학;성우제
    • 한국BIM학회 논문집
    • /
    • 제11권4호
    • /
    • pp.42-52
    • /
    • 2021
  • Paneling building facades is one of the essential procedures in building construction. Traditionally, it has been an easy task of simply projecting paneling patterns drawn in drawing boards onto 3d building facades. However, as many organic or curved building shapes are designed and constructed in modern architectural practices, the traditional one-to-one projection is becoming obsolete for the building types of the kind. That is primarily because of the geometrical discrepancies between 2d drawing boards and 3d curved building surfaces. In addition, curved compound surfaces are often utilized to accommodate the complicated spatial programs, building codes, and zoning regulations or to achieve harmonious geometrical relationships with neighboring buildings in highly developed urban contexts. The use of the compound surface apparently makes the traditional paneling pattern projection more challenging. Various mapping technics have been introduced to deal with the inabilities of the projection methods for curved facades. The mapping methods translate geometries on a 2d surface into a 3d building façade at the same topological locations rather than relying on Euclidean or Affine projection. However, due to the intrinsic differences of the planar 2d and curved 3d surfaces, the mapping often comes with noticeable distortions of the paneling patterns. Thus, this paper proposes a practical method of drawing paneling patterns directly on a curved compound surface utilizing Geodesic, which is faithful to any curved surface, to minimize unnecessary distortions.

메타버스의 경험과 기술을 활용한 건축설계 프로세스의 적용가능성에 관한 연구 (A Study on the Applicability of the Architectural design process using the Metaverse Experience and Technology - Case studies of Metaverse Platforms)

  • 전수경;차승현
    • 한국BIM학회 논문집
    • /
    • 제13권2호
    • /
    • pp.16-28
    • /
    • 2023
  • The concept of the Metaverse has been around not only for play but also for daily use. The interest in Metaverse is increasing, and various industries such as medicine, media, and financial started to use the new technology for diverse purposes. In addition, interest in the Metaverse is increasing in the architectural industry, but not much research has been done yet. Recently, some studies started to study focusing on the architectural design of Metaverse and the technological characteristics of Metaverse. However, there are limited studies about the utilization of the Metaverse in the architectural design process or construction process. From this perspective, the study aims to analyze the applicability of the Metaverse in the architectural design process through Metaverse case studies. In order to accomplish the research goal, the study classified user experience and technology of Metaverse in the literature review and Metaverse use in other industries such as commercial, medical, media entertainment, and construction industry. Then, this study analyzes six representative Metaverse platforms according to the application of Metaverse in the architectural design process. Finally, this study discussed the future direction and potential of Metaverse application in the Architectural design process.

효율적인 건축디자인을 위한 가상현실을 활용한 공간경험연구 (Human Experience Using Virtual Reality for an Optimal Architectural Design)

  • 전수경;차승현
    • 한국BIM학회 논문집
    • /
    • 제14권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Virtual reality is one of the key emerging technologies of the 21th century and it has been used in a variety of ways in the fields of architectural research. Virtual reality is presented as an ideal alternative for studying the interaction between space and humans because it provides a realistic spacial experience while allowing experimenters to control environmental variables at a low cost easily. It allowed us to deepen our knowledge of human spatial experience in the built environment. However, existing reviews do not include the following points: 1) previous review research has been focused on using virtual reality technology in construction and engineering, not spatial experience, 2) recently, some review researches started to study the interaction between space and humans in the built environment, however, they do not suggest specific concepts of spatial experience. The present review aims to examine the existing literature about measuring spatial experience using virtual reality in architectural design. The study conducted a systematic qualitative review that analyzes and synthesizes the evolving literature regarding design elements, methodology, and usability. The study concludes with an overall discussion and their potential for providing further directions for future research.

생성형 AI 기반 초기설계단계 외관디자인 시각화 접근방안 - 건축가 스타일 추가학습 모델 활용을 바탕으로 - (Generative AI-based Exterior Building Design Visualization Approach in the Early Design Stage - Leveraging Architects' Style-trained Models -)

  • 유영진;이진국
    • 한국BIM학회 논문집
    • /
    • 제14권2호
    • /
    • pp.13-24
    • /
    • 2024
  • This research suggests a novel visualization approach utilizing Generative AI to render photorealistic architectural alternatives images in the early design phase. Photorealistic rendering intuitively describes alternatives and facilitates clear communication between stakeholders. Nevertheless, the conventional rendering process, utilizing 3D modelling and rendering engines, demands sophisticate model and processing time. In this context, the paper suggests a rendering approach employing the text-to-image method aimed at generating a broader range of intuitive and relevant reference images. Additionally, it employs an Text-to-Image method focused on producing a diverse array of alternatives reflecting architects' styles when visualizing the exteriors of residential buildings from the mass model images. To achieve this, fine-tuning for architects' styles was conducted using the Low-Rank Adaptation (LoRA) method. This approach, supported by fine-tuned models, allows not only single style-applied alternatives, but also the fusion of two or more styles to generate new alternatives. Using the proposed approach, we generated more than 15,000 meaningful images, with each image taking only about 5 seconds to produce. This demonstrates that the Generative AI-based visualization approach significantly reduces the labour and time required in conventional visualization processes, holding significant potential for transforming abstract ideas into tangible images, even in the early stages of design.

신속한 건축물 스캔을 위한 SLAM기반 이동형 스캔백팩 시스템 개발 고려사항 도출 (Identifying Considerations for Developing SLAM-based Mobile Scan Backpack System for Rapid Building Scanning)

  • 강태욱
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.312-320
    • /
    • 2020
  • 3D 스캐닝과 역설계 기술은 기계/제조 분야에서 먼저 시작하였다. 건설 분야에서는 BIM(Building Information Modeling) 기반 3D 모델링 활용 환경이 조성되어 3D 스캐닝 기술을 이용하여 공장 사전제작, 구조물 시공 검측, 플랜트 시설물, 교량, 터널 구조물 검측 등 건설 전반에 활용하고 있다. 스캔 방식 중 고정식 LiDAR는 이동식 LiDAR에 비해 정확도와 밀도가 높으나 정합 시간과 데이터 처리에 오랜 시간이 걸린다. 하지만, 인테리어, 건축물 관리와 같이 상대적으로 높은 정확도가 필요하지 않은 분야에서 사용자가 편리하게 이동하며 스캔할 수 있는 방법이 생산적이고 효율적이다. 이 연구는 자유롭게 이동하면서 실시간 점군 정합을 지원하는 SLAM(Simultaneous Localization and Mapping)기반 스캔백팩 시스템 개발 시 고려사항을 도출한다. 본 연구를 통해 모바일 스캔 기술을 이용한 스캔 생산성 개선을 위해, SLAM기반 스캔백팩(Scan Backpack) 장치 개발을 위한 프레임웍, 시스템 및 컴포넌트 구조를 제안하고, 프로토타입을 통해 개발 시 고려사항을 도출한다. 프로토타입 개발은 SLAM 및 스캔백팩 2단계로 수행해, 고려사항을 도출하고, 수행 결과를 분석하였다.

스마트 기기의 증강현실을 이용한 타워크레인 선정방안 (Method to Select Tower Cranes Using Augmented Reality in Smart Devices)

  • 류한국;최희복;장명훈
    • 한국건축시공학회지
    • /
    • 제14권5호
    • /
    • pp.407-413
    • /
    • 2014
  • 고층건축공사의 양중장비의 선정은 프로젝트 성공의 중요한 요소 중의 하나이다. 건설현장에서는 전문가나 경험이 많은 공사관리자가 2차원 도면 위에 타워크레인의 회전반경을 고려하여 위치를 이동시키는 방법을 통해 적절한 위치를 결정한다. CAD와 BIM, 가상현실 등이 건축설계와 시공단계에 많이 활용되고 있지만 가설계획이나 타워크레인을 선정하기 위해서는 사용되지 않고 있다. 이 연구는 적절한 타워크레인의 위치를 선정하기 위해 증강현실 기술을 이용하는 방법을 제안하고 있다. Vuforia와 Unity 3d를 이용하여 타워크레인의 위치를 선정할 수 있는 증강현실 프로토타입을 구현하였으며 실제 건축도면을 통해 활용성을 검증하였다.