• Title/Summary/Keyword: BIG4

Search Result 3,614, Processing Time 0.028 seconds

Comparative Policy Analysis on ICT Small and Medium-sized Venture Using Cognitive Map Analysis (인지지도를 활용한 ICT 중소벤처 지원정책 비교분석)

  • Park, Eunyub;Lee, Jung Mann
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.3
    • /
    • pp.75-93
    • /
    • 2022
  • The purpose of this study is to compare and analyze each government's ICT SME support policies to cope with changes in the ICT ecosystem paradigm. In particular, the core policies and policy trends of the Moon's government are presented through keyword network analysis and cognitive map analysis. As a result, core technologies such as ICT(Information Communication Technology), AI(Artificial Intelligence), Big Data, and 5G, which have high values of betweenness centrality and closeness centrality, are major keywords with high propagation power. The cognitive map analysis shows that the opportunity factors for the 4th industrial revolution are being activated through the ICT infrastructure circulation process, the domestic market circulation process, and the global market circulation process. This study is meaningful in terms of cognitive map analysis and utilization based on scientific analysis.

Optimizing the Exhaustion of Inventory for Design Changes: Focusing on Concrete Pump Truck Outrigger Process (설계변경 재고 소진 최적화: E사(社) 펌프카 아우트리거 공정 중심으로)

  • Chan-Woong Park
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.174-179
    • /
    • 2022
  • Companies are making design changes by improving product quality and function to succeed while meeting customer requirements continuously. Design changes are changing the product BOM's amount, item, specification, and shape while causing a change in the product's structure. At this time, the problem of inventory exhaustion of parts before design change is a big topic. If the inventory exhaustion fails, the pieces before the design change become unused and are discarded, resulting in a decrease in asset value, and the quality cost of the design change affects the company's profits. Therefore, it is necessary to decide to minimize quality costs while minimizing waste inventory costs at the time of application of design changes. According to the analysis, priorities should be prioritized according to urgency because the quantity of items before the design change affects the applied lead time.

The Excitation of Waves Associated with a Collapsing Granule in the Photosphere and Chromosphere

  • Kwak, Hannah;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.42.1-42.1
    • /
    • 2019
  • We investigate a collapsing granule event and the associated excitation of waves in the photosphere and chromosphere. Our observations were carried out by using the Fast Imaging Solar Spectrograph and the TiO 7057Å Broadband Filter Imager of the 1.6 meter Goode Solar Telescope of Big Bear Solar Observatory. During our observations, we found a granule which became significantly darker than neighboring granules. The edge of the granule collapsed within several minutes. After the collapse, transient oscillations occurred in the photospheric and chromospheric layers. The dominant period of the oscillations is close to 4.5 minutes in the photosphere and 4 minutes in the chromosphere. Moreover, in the Ca II-0.5Å raster image, we observed brightenings which are considered as the manifestation of shock waves. Based on our results, we suggest that the impulsive collapse of a granule can generate upward-propagating acoustic waves in the solar quiet region that ultimately develop into shocks.

  • PDF

A modified test for multivariate normality using second-power skewness and kurtosis

  • Namhyun Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.423-435
    • /
    • 2023
  • The Jarque and Bera (1980) statistic is one of the well known statistics to test univariate normality. It is based on the sample skewness and kurtosis which are the sample standardized third and fourth moments. Desgagné and de Micheaux (2018) proposed an alternative form of the Jarque-Bera statistic based on the sample second power skewness and kurtosis. In this paper, we generalize the statistic to a multivariate version by considering some data driven directions. They are directions given by the normalized standardized scaled residuals. The statistic is a modified multivariate version of Kim (2021), where the statistic is generalized using an empirical standardization of the scaled residuals of data. A simulation study reveals that the proposed statistic shows better power when the dimension of data is big.

A Study on Impact of Deep Learning on Korean Economic Growth Factor

  • Dong Hwa Kim;Dae Sung Seo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.90-99
    • /
    • 2023
  • This paper deals with studying strategy about impact of deep learning (DL) on the factor of Korean economic growth. To study classification of impact factors of Korean economic growth, we suggest dynamic equation of microeconomy and study methods on economic growth impact of deep learning. Next step is to suggest DL model to dynamic equation with Korean economy data with growth related factors to classify what factor is import and dominant factors to build policy and education. DL gives an influence in many areas because it can be implemented with ease as just normal editing works and speak including code development by using huge data. Currently, young generations will take a big impact on their job selection because generative AI can do well as much as humans can do it everywhere. Therefore, policy and education methods should be rearranged as new paradigm. However, government and officers do not understand well how it is serious in policy and education. This paper provides method of policy and education for AI education including generative AI through analysing many papers and reports, and experience.

A Review of FoodTech Applied to Foodservice (급식외식분야 푸드테크 동향 연구)

  • Jong Kyung Lee
    • Journal of the FoodService Safety
    • /
    • v.4 no.2
    • /
    • pp.42-47
    • /
    • 2023
  • The FoodTech industry has been developed with the rise of start-up by using AI, big data, robotics, biotechnology. In addition, sustainable development is more important with the trend of population growth, aging, and climate change. We investigated the impact of FoodTech on the foodservice industry with the cases of the global and domestic companies. The technology of AI, IoT, blockchain, robotics, automation systems are widely used to improve food safety and hygiene while as the use of diagnostic biomarkers such as blood or DNA, digital platform and app, and AI-based solutions are used in the field of personalized nutrition. With the expand of FoodTech in foodservice industry, the competencies that the managers need to develop include understanding technology, resource management, self-development, work ethics, problem-solving, and communication, therefore the support of the related education and training is required.

Enhancing E-commerce Security: A Comprehensive Approach to Real-Time Fraud Detection

  • Sara Alqethami;Badriah Almutanni;Walla Aleidarousr
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.1-10
    • /
    • 2024
  • In the era of big data, the growth of e-commerce transactions brings forth both opportunities and risks, including the threat of data theft and fraud. To address these challenges, an automated real-time fraud detection system leveraging machine learning was developed. Four algorithms (Decision Tree, Naïve Bayes, XGBoost, and Neural Network) underwent comparison using a dataset from a clothing website that encompassed both legitimate and fraudulent transactions. The dataset exhibited an imbalance, with 9.3% representing fraud and 90.07% legitimate transactions. Performance evaluation metrics, including Recall, Precision, F1 Score, and AUC ROC, were employed to assess the effectiveness of each algorithm. XGBoost emerged as the top-performing model, achieving an impressive accuracy score of 95.85%. The proposed system proves to be a robust defense mechanism against fraudulent activities in e-commerce, thereby enhancing security and instilling trust in online transactions.

Machine Learning Techniques for Diabetic Retinopathy Detection: A Review

  • Rachna Kumari;Sanjeev Kumar;Sunila Godara
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.67-76
    • /
    • 2024
  • Diabetic retinopathy is a threatening complication of diabetes, caused by damaged blood vessels of light sensitive areas of retina. DR leads to total or partial blindness if left untreated. DR does not give any symptoms at early stages so earlier detection of DR is a big challenge for proper treatment of diseases. With advancement of technology various computer-aided diagnostic programs using image processing and machine learning approaches are designed for early detection of DR so that proper treatment can be provided to the patients for preventing its harmful effects. Now a day machine learning techniques are widely applied for image processing. These techniques also provide amazing result in this field also. In this paper we discuss various machine learning and deep learning based techniques developed for automatic detection of Diabetic Retinopathy.

Formal Analysis of Distributed Shared Memory Algorithms

  • Muhammad Atif;Muhammad Adnan Hashmi;Mudassar Naseer;Ahmad Salman Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.192-196
    • /
    • 2024
  • The memory coherence problem occurs while mapping shared virtual memory in a loosely coupled multiprocessors setup. Memory is considered coherent if a read operation provides same data written in the last write operation. The problem is addressed in the literature using different algorithms. The big question is on the correctness of such a distributed algorithm. Formal verification is the principal term for a group of techniques that routinely use an analysis that is established on mathematical transformations to conclude the rightness of hardware or software behavior in divergence to dynamic verification techniques. This paper uses UPPAAL model checker to model the dynamic distributed algorithm for shared virtual memory given by K.Li and P.Hudak. We analyse the mechanism to keep the coherence of memory in every read and write operation by using a dynamic distributed algorithm. Our results show that the dynamic distributed algorithm for shared virtual memory partially fulfils its functional requirements.

Development of a Deep Learning Algorithm for Small Object Detection in Real-Time (실시간 기반 매우 작은 객체 탐지를 위한 딥러닝 알고리즘 개발)

  • Wooseong Yeo;Meeyoung Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.1001-1007
    • /
    • 2024
  • Recent deep learning algorithms for object detection in real-time play a crucial role in various applications such as autonomous driving, traffic monitoring, health care, and water quality monitoring. The size of small objects, in particular, significantly impacts the accuracy of detection models. However, data containing small objects can lead to underfitting issues in models. Therefore, this study developed a deep learning model capable of quickly detecting small objects to provide more accurate predictions. The RE-SOD (Residual block based Small Object Detector) developed in this research enhances the detection performance for small objects by using RGB separation preprocessing and residual blocks. The model achieved an accuracy of 1.0 in image classification and an mAP50-95 score of 0.944 in object detection. The performance of this model was validated by comparing it with real-time detection models such as YOLOv5, YOLOv7, and YOLOv8.