• Title/Summary/Keyword: BIG4

Search Result 3,612, Processing Time 0.034 seconds

According to combinations of core structure big.LITTLE Studies on the power and performance (big.LITTLE 구조의 core 조합에 따른 전력과 성능에 관한 연구)

  • Lee, Sang-Ah;Lee, Seunghac;Yoo, Seehwan
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.144-147
    • /
    • 2015
  • big.LITTLE 구조는 고성능 코어와 저전력 코어를 조합하여 전력과 성능, 일석이조의 효과를 볼 수 있다. CPU의 연산에 집중된 벤치마크인 MP Whetstone과 MP Dhrystone을 통해 2개의 고성능 코어와 4개의 저전력 코어에서 가능한 모든 조합의 전력과 처리량을 분석하여 big.LITTLE 구조의 효율성을 확인할 수 있을 것으로 보인다.

Application of Lee Silverman Voice Treatment-BIG(LSVT-BIG) Intervention to Improve Motor Functions and Quality of Life in People With Parkinson Disease (파킨슨병 환자에게 Lee Silverman Voice Treatment-BIG(LSVT-BIG) 프로그램의 적용이 운동기능과 삶의 질에 미치는 효과)

  • Park, Kang-Hyun;Kim, Jae-Hwan;Jang, Jong-Sik
    • Therapeutic Science for Rehabilitation
    • /
    • v.8 no.1
    • /
    • pp.73-84
    • /
    • 2019
  • Objective: The purpose of this study is to compare the effect of Lee Silverman Voice Treatment-BIG(LSVT-BIG) intervention which consisted of standardized exercise programs and occupation-based activities for people with Parkinson Disease(PD) on motor functions and quality of life Methods: This study applied a one group pretest-posttest design. The experiment was divided into two parts: pre intervention and post intervention period. Before and after LSVT-BIG intervention, Unified Parkinson's Disease Rating Scale(UPDRS), Time up and go(TUG), Parkinson's Disease Questionnaire-39(PDQ-39) were used to measure the participants' motor functions and quality of life. Based on the LSVT-BIG protocol, three participants received 16 one-hour sessions over 4 weeks by a certified occupational therapist. The results were analyzed by using SPSS. Results: There were improvements in UPDRS and TUG. Additionally, PDQ-39 scores decreased in all participants, which means that their quality of life was improved. Conclusions: The study demonstrated positive effects of LSVT-BIG intervention on motor functions and quality of life of patients with PD.

Big Data, Business Analytics, and IoT: The Opportunities and Challenges for Business (빅데이터, 비즈니스 애널리틱스, IoT: 경영의 새로운 도전과 기회)

  • Jang, Young Jae
    • The Journal of Information Systems
    • /
    • v.24 no.4
    • /
    • pp.139-152
    • /
    • 2015
  • With the advancement of the Internet/IT technologies and the increased computation power, massive data can be collected, stored, and processed these days. The availability of large databases has brought forth a new era in which companies are hard pressed to find innovative ways to utilize immense amounts of data at their disposal. Indeed, data has opened a new age of business operations and management. There are already many cases of innovative businesses reaping success thanks to scientific decisions based on data analysis and mathematical algorithms. Big Data is a new paradigm in itself. In this article, Big Data is viewed as a new perspective rather than a new technology. This value centric definition of Big Data provides a new insight and opportunities. Moreover, the Business Analytics, which is the framework of creating tangible results in management, is introduced. Then the Internet of Things (IoT), another innovative concept of data collection and networking, is presented and how this new concept can be interpreted with Big Data in terms of the value centric perspective. The challenges and opportunities with these new concepts are also discussed.

Changes in Measuring Methods of Walking Behavior and the Potentials of Mobile Big Data in Recent Walkability Researches (보행행태조사방법론의 변화와 모바일 빅데이터의 가능성 진단 연구 - 보행환경 분석연구 최근 사례를 중심으로 -)

  • Kim, Hyunju;Park, So-Hyun;Lee, Sunjae
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to evaluate the walking behavior analysis methodology used in the previous studies, paying attention to the demand for empirical data collecting for urban and neighborhood planning. The preceding researches are divided into (1)Recording, (2) Surveys, (3)Statistical data, (4)Global positioning system (GPS) devices, and (5)Mobile Big Data analysis. Next, we analyze the precedent research and identify the changes of the walkability research. (1)being required empirical data on the actual walking and moving patterns of people, (2)beginning to be measured micro-walking behaviors such as actual route, walking facilities, detour, walking area. In addition, according to the trend of research, it is analyzed that the use of GPS device and the mobile big data are newly emerged. Finally, we analyze pedestrian data based on mobile big data in terms of 'application' and distinguishing it from existing survey methodology. We present the possibility of mobile big data. (1)Improvement of human, temporal and spatial constraints of data collection, (2)Improvement of inaccuracy of collected data, (3)Improvement of subjective intervention in data collection and preprocessing, (4)Expandability of walking environment research.

Requirements for Operation Procedure and Plan for the Korean Aviation Safety Big-Data Platform based on the Case of FAA ASIAS (국내 항공안전 빅데이터 플랫폼 운영관리체계 수립 중점 - FAA ASIAS를 중심으로 -)

  • Kim, Jun Hwan;Lim, Jae Jin;Park, Yu Rim;Lee, Jang Ryong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.105-116
    • /
    • 2021
  • The importance of a systematic approach to collect, process, analyze, and share safety data in aviation safety management is continuously increasing. Accordingly, the domestic aviation industry has been making efforts to build a Big-data platform that can utilize multi-field safety data generated and managed by various stakeholders and to develop safety management technology based on them. Big data platforms not only must meet appropriate technical requirements, but also need to establish a management system for effective operation. The purpose of this study is to suggest the requirements of the aviation safety big data platform operation procedure and plan by reviewing the advanced overseas cases (FAA ASIAS). This study can provide overall framework and managerial direction for the operation of the aviation safety big data platform.

A Study on the Classification of Variables Affecting Smartphone Addiction in Decision Tree Environment Using Python Program

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.68-80
    • /
    • 2022
  • Since the launch of AI, technology development to implement complete and sophisticated AI functions has continued. In efforts to develop technologies for complete automation, Machine Learning techniques and deep learning techniques are mainly used. These techniques deal with supervised learning, unsupervised learning, and reinforcement learning as internal technical elements, and use the Big-data Analysis method again to set the cornerstone for decision-making. In addition, established decision-making is being improved through subsequent repetition and renewal of decision-making standards. In other words, big data analysis, which enables data classification and recognition/recognition, is important enough to be called a key technical element of AI function. Therefore, big data analysis itself is important and requires sophisticated analysis. In this study, among various tools that can analyze big data, we will use a Python program to find out what variables can affect addiction according to smartphone use in a decision tree environment. We the Python program checks whether data classification by decision tree shows the same performance as other tools, and sees if it can give reliability to decision-making about the addictiveness of smartphone use. Through the results of this study, it can be seen that there is no problem in performing big data analysis using any of the various statistical tools such as Python and R when analyzing big data.

Improvement of BigCloneBench Using Tree-Based Convolutional Neural Network (트리 기반 컨볼루션 신경망을 이용한 BigCloneBench 개선)

  • Park, Gunwoo;Hong, Sung-Moon;Kim, Hyunha;Doh, Kyung-Goo
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • BigCloneBench has recently been used for performance evaluation of code clone detection tool using machine learning. However, since BigCloneBench is not a benchmark that is optimized for machine learning, incorrect learning data can be created. In this paper, we have shown through experiments using machine learning that the set of Type-4 clone methods provided by BigCloneBench can additionally be found. Experimental results using Tree-Based Convolutional Neural Network show that our proposed method is effective in improving BigCloneBench's dataset.

A Study on the Policy Trends for the Revitalization of Medical Big Data Industry (의료 빅데이터 산업 활성화를 위한 정책 동향 고찰)

  • Kim, Hyejin;Yi, Myongho
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.325-340
    • /
    • 2020
  • Today's rapidly developing health technology is accumulating vast amounts of data through medical devices based on the Internet of Things in addition to data generated in hospitals. The collected data is a raw material that can create a variety of values, but our society lacks legal and institutional mechanisms to support medical Big Data. Therefore, in this study, we looked at four major factors that hinder the use of medical Big Data to find ways to enhance use of the Big Data based healthcare industry, and also derived implications for expanding domestic medical Big Data by identifying foreign policies and technological trends. As a result of the study, it was concluded that it is necessary to improve the regulatory system that satisfies the security and usability of healthcare Big Data as well as establish Big Data governance. For this, it is proposed to refer to the Big Data De-identification Guidelines adopted by the United States and the United Kingdom to reorganize the regulatory system. In the future, it is expected that it will be necessary to have a study that has measures of the conclusions and implications of this study and to supplement the institutional needs to play a positive role in the use of medical Big Data.

Research on the Development of Big Data Analysis Tools for Engineering Education (공학교육 빅 데이터 분석 도구 개발 연구)

  • Kim, Younyoung;Kim, Jaehee
    • Journal of Engineering Education Research
    • /
    • v.26 no.4
    • /
    • pp.22-35
    • /
    • 2023
  • As information and communication technology has developed remarkably, it has become possible to analyze various types of large-volume data generated at a speed close to real time, and based on this, reliable value creation has become possible. Such big data analysis is becoming an important means of supporting decision-making based on scientific figures. The purpose of this study is to develop a big data analysis tool that can analyze large amounts of data generated through engineering education. The tasks of this study are as follows. First, a database is designed to store the information of entries in the National Creative Capstone Design Contest. Second, the pre-processing process is checked for analysis with big data analysis tools. Finally, analyze the data using the developed big data analysis tool. In this study, 1,784 works submitted to the National Creative Comprehensive Design Contest from 2014 to 2019 were analyzed. As a result of selecting the top 10 words through topic analysis, 'robot' ranked first from 2014 to 2019, and energy, drones, ultrasound, solar energy, and IoT appeared with high frequency. This result seems to reflect the current core topics and technology trends of the 4th Industrial Revolution. In addition, it seems that due to the nature of the Capstone Design Contest, students majoring in electrical/electronic, computer/information and communication engineering, mechanical engineering, and chemical/new materials engineering who can submit complete products for problem solving were selected. The significance of this study is that the results of this study can be used in the field of engineering education as basic data for the development of educational contents and teaching methods that reflect industry and technology trends. Furthermore, it is expected that the results of big data analysis related to engineering education can be used as a means of preparing preemptive countermeasures in establishing education policies that reflect social changes.

A Case Study of Big Data Quality in a Legal Tech Service (빅데이터 품질 사례연구 : 법률 서비스 품질 체계)

  • Park, Jooseok;Kim, Seunghyun;Ryu, Hocheol
    • The Journal of Bigdata
    • /
    • v.3 no.1
    • /
    • pp.33-40
    • /
    • 2018
  • With the advent of the fourth industrial revolution, each industry has been innovated with new concepts. New concept of each industry takes advantage of new information technologies based on big data infra. Thus quality control of big data is becoming more important. In this paper, we try to develop a framework of big data service quality through a case study. A 'Legal Tech' service was selected for the case study. Especially a big data quality framework was developed for a living law service in the Ministry of Justice.