• Title/Summary/Keyword: BIG4

Search Result 3,612, Processing Time 0.035 seconds

Exploring the leading indicator and time series analysis on the diffusion of big data in Korea (빅데이터 확산에 대한 선행 데이터 탐색 및 국내 확산 과정의 시계열 분석)

  • Choi, Jin;Kim, YoungJun
    • Journal of Technology Innovation
    • /
    • v.26 no.4
    • /
    • pp.57-97
    • /
    • 2018
  • Big Data has spread rapidly in various industries since 2010. We analyzed the general characteristics of big data through time series analysis on the initial process of spreading big data and investigated the difference of diffusion characteristics in each industry. By analyzing papers, patents, news data, and Google Trend using Big Data as a keyword, we searched for data corresponding to the leading indicator, and confirmed that trends in news and Google Trend preceded the papers and patents by two years. We used Google Trend to compare the introduction period of domestic, US, Japan, and China and quantify the process of spreading the eight main industries in Korea through news data. Through this study, we present an empirical research method on how the general technology spreads in several industry sectors and we have figured out where the spreading speed difference of big data originated in each industry in Korea. The method presented here can be used to analyze the technology introduced from foreign countries in developing countries because it can be analyzed in diffusion process of other technologies besides big data and corresponds to the diffusion of technology keywords in a specific country. And, on the corporate side, this approach shows what path is effective when it comes to launching and spreading new technologies.

Adolescents' Self-control and Big Five Personality Types Affecting Maladaptive and Adaptive Computer Game Use State (청소년의 Big Five 성격 유형과 자기 조절 성향이 게임 과용, 선용 행태에 미치는 영향)

  • Kim, YoungBerm;Lee, SangHo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.4
    • /
    • pp.65-77
    • /
    • 2019
  • Adolescents reach the game-use states of adaptive and maladaptive by the absorption to computer game. Authors claimed that the two states are commonly related with the time of game-use, and the degree of them are distinctive according to adolescent individuals, specifically their self-control propensity. Authors proposed a conceptual research model that Big Five personality types predict their self-control which moderates the relationships from game use-time to the maladaptive and adaptive states. The data to test its validity and reliability had been sampled 999 Korean students in elementary school, middle school, and high school. Resultingly, the openness and conscientiousness of the adolescents affected positively on the self-control, which moderated negatively the relationship from the game use time to the maladaptive use state, but the positive moderation on the relationships from game use time to adpative state was not significant. These results mean that we could apply teenager's Big Five personality type and their self-control traits as a tool for preventing teens from the overuse state like addiction.

On correlation and causality in the analysis of big data (빅 데이터 분석에서 상관성과 인과성)

  • Kim, Joonsung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.8
    • /
    • pp.845-852
    • /
    • 2018
  • Mayer-Schönberger and Cukier(2013) explain why big data is important for our life, while showing many cases in which analysis of big data has great significance for our life and raising intriguing issues on the analysis of big data. The two authors claim that correlation is in many ways practically far more efficient and versatile in the analysis of big data than causality. Moreover, they claim that causality could be abandoned since analysis and prediction founded on correlation must prevail. I critically examine the two authors' accounts of causality and correlation. First, I criticize that corelation is sufficient for our analysis of data and our prediction founded on the analysis. I point out their misunderstanding of the distinction between correlation and causality. I show that spurious correlation misleads our decision while analyzing Simpson paradox. Second, I criticize not only that causality is more inefficient in the analysis of big data than correlation, but also that there is no mathematical theory for causality. I introduce the mathematical theories of causality founded on structural equation theory, and show that causality has great significance for the analysis of big data.

Digital Health Care based in the Community (지역사회기반 디지털 헬스케어)

  • Han, Jeong-won;Jung, Ji-won;Yu, Ji-in;Kim, Ji-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.511-513
    • /
    • 2022
  • Digital Health Care is the convergence of ICT and (non)medical technology, emphasizing the importance of prevent and monitoring health management in terms of new challenging medical paradigm: predictive, preventive, personalized and participatory. Beyond the limited medical industry of long-term care insurance, it is emerging that AI, IoT, Big Data related new services with new technologies in the 4th revolution era. It is also noted that business field based on test bed is emergent; Caring Robot, wearable devices need to be launched in the market. Diverse service is possible with Big Data and AI etc.

  • PDF

A Study on Effective Real Estate Big Data Management Method Using Graph Database Model (그래프 데이터베이스 모델을 이용한 효율적인 부동산 빅데이터 관리 방안에 관한 연구)

  • Ju-Young, KIM;Hyun-Jung, KIM;Ki-Yun, YU
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.163-180
    • /
    • 2022
  • Real estate data can be big data. Because the amount of real estate data is growing rapidly and real estate data interacts with various fields such as the economy, law, and crowd psychology, yet is structured with complex data layers. The existing Relational Database tends to show difficulty in handling various relationships for managing real estate big data, because it has a fixed schema and is only vertically extendable. In order to improve such limitations, this study constructs the real estate data in a Graph Database and verifies its usefulness. For the research method, we modeled various real estate data on MySQL, one of the most widely used Relational Databases, and Neo4j, one of the most widely used Graph Databases. Then, we collected real estate questions used in real life and selected 9 different questions to compare the query times on each Database. As a result, Neo4j showed constant performance even in queries with multiple JOIN statements with inferences to various relationships, whereas MySQL showed a rapid increase in its performance. According to this result, we have found out that a Graph Database such as Neo4j is more efficient for real estate big data with various relationships. We expect to use the real estate Graph Database in predicting real estate price factors and inquiring AI speakers for real estate.

Trends in the use of big data and artificial intelligence in the sports field (스포츠 현장에서의 빅데이터와 인공지능 활용 동향)

  • Seungae Kang
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.115-120
    • /
    • 2022
  • This study analyzed the recent trends in the sports environment to which big data and AI technologies, which are representative technologies of the 4th Industrial Revolution, and approached them from the perspective of convergence of big data and AI technologies in the sports field. And the results are as follows. First, it is being used for player and game data analysis and team strategy establishment and operation. Second, by combining big data collected using GPS, wearable equipment, and IoT with artificial intelligence technology, scientific physical training for each player is possible through user individual motion analysis, which helps to improve performance and efficiently manage injuries. Third, with the introduction of an AI-based judgment system, it is being used for judge judgment. Fourth, it is leading the change in marketing and game broadcasting services. The technology of the 4th Industrial Revolution is bringing innovative changes to all industries, and the sports field is also in the process. The combination of big data and AI is expected to play an important role as a key technology in the rapidly changing future in a sports environment where scientific analysis and training determine victory or defeat.

Keyword Analysis of COVID-19 in News Big Data : Focused on 4 Major Daily Newspapers

  • Kwon, Seong-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.101-107
    • /
    • 2020
  • This paper aims to compare and analyze the major keywords according to the political orientation of progressive and conservative newspapers by utilizing the big data of the four major domestic daily newspapers related to COVID-19, which has entered a long-term war. To this end, 93,917 news reports from Jan. 20 to Sept. 15, 2020 were divided into four stages and the major keywords of the four newspapers were implemented and analyzed in WordCloud. According to the analysis, the conservative newspaper focused on the government's response, criticism, and China's responsibility by mentioning the keywords "government," "president," "state of affairs" and "mask" more than the progressive newspaper, while the progressive newspaper uses keywords that emphasize the seriousness of the disease and the occurrence of a dangerous situation. The Chosun Ilbo found that the use of various keywords during the massive outbreak of collective infections (2.18-5.15), and that the JoongAng Ilbo used keywords criticizing government policies in relation to reports of infectious diseases such as COVID-19, but also used keywords that emphasize the seriousness of diseases used by progressive newspapers and the occurrence of dangerous situations.

Online Course Evaluation Method by Using Automatic Classification Technology (자동 분류 기술을 활용한 온라인 강의 평가 방법)

  • Lee, Yong-Bae
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.4
    • /
    • pp.291-300
    • /
    • 2020
  • Although the need for international online courses and the number of online learners has been rapidly increasing, the online class evaluation has been mostly relying on the quantitative survey analysis. So a more objective evaluation method has to be developed to more accurately assess online course satisfaction. This study highlights the benefits of using big data analysis from the bulletin board messages of online learning system as a method to evaluate the online courses. In fact, automatic classification technology is recognized as an important technology among big data analysis techniques. Our team applied this technique to evaluate the online courses. From the delphi analysis results, suggested method was concluded that the evaluation items and classification results are suitable for online course evaluation and applicable in schools or institutions. This study has confirmed that the rapidly accumulating big data analysis technology can be successfully applied to the education sector with the least change. It also diagnosed a meaningful possibility to expand the big data analysis for further application.

A Study on Countermeasures of Convergence for Big Data and Security Threats to Attack DRDoS in U-Healthcare Device (U-Healthcare 기기에서 DRDoS공격 보안위협과 Big Data를 융합한 대응방안 연구)

  • Hur, Yun-A;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.4
    • /
    • pp.243-248
    • /
    • 2015
  • U-Healthcare is a convergence service with medical care and IT which enables to examine, manage and maintain the patient's health any time and any place. For communication conducted in U-Healthcare service, the transmission methods are used that patient's medical checkup analysis results or emergency data are transmitted to hospital server using wireless communication method. At this moment when the attacker who executes the malicious access makes DRDoS(Distributed Reflection DoS) attack to U-Healthcare devices or BS(Base Station), various damages occur that contextual information of urgent patients are not transmitted to hospital server. In order to deal with this problem, this study suggests DRDoS attack scenario and countermeasures against DRDoS and converges with Big Data which could process large amount of packets. When the attacker attacks U-Healthcare devices or BS(Base Station), DB is interconnected and the attack is prevented if it is coincident. This study analyzes the attack method that could occur in U-Healthcare devices or BS which are remote medical service and suggests countermeasures against the security threat using Big Data.

A Study on the Selection of Core Services for Geo-Spatial Big Data (공간 빅데이터 핵심서비스 선정에 관한 연구)

  • Lee, Myeong Ho;Park, Joon Min;Shin, Dong bin;Ahn, Jong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.385-396
    • /
    • 2015
  • The purpose of this study are in selecting a core service and drawing an analysis functions and service sector, based on contents of geo-spatial big data. For the study, the demand survey in the methodology has to be done by reviewing of preceding geo-spatial big data service. The survey has conducted by targeting on those experts in Industry-Academy-Research cooperation. From the survey, we could draw out requirements for the analysis function and the geo-spatial big data service sector. Also, order of priorities in service of four fields(Society, Environment, Economy, Humanities) has been utilized by a QFD(Quality Function Deployment). With the data, the first two priorities and required sectors for each field were selected for the analysis functions. From the result, we could suggest the core service model(plan), and also expect developments following each sectoral core service in the future.