• Title/Summary/Keyword: BIG4

Search Result 3,614, Processing Time 0.03 seconds

Analysis of the Precedence of Stock Price Variables Using Cultural Content Big Data (문화콘텐츠 빅데이터를 이용한 주가 변수 선행성 분석)

  • Ryu, Jae Pil;Lee, Ji Young;Jeong, Jeong Young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.222-230
    • /
    • 2022
  • Recently, Korea's cultural content industry is developing, and behind the growing recognition around the world is the real-time sharing service of global network users due to the development of science and technology. In particular, in the case of YouTube, its propagation power is fast and powerful in that everyone, not limited users, can become potential video providers. As more than 80% of mobile phone users are using YouTube in Korea, YouTube's information means that psychological factors of users are reflected. For example, information such as the number of video views, likes, and comments of a channel with a specific personality shows a measure of the channel's personality interest. This is highly related to the fact that information such as the frequency of keyword search on portal sites is closely related to the stock market economically and psychologically. Therefore, in this study, YouTube information from a representative entertainment company is collected through a crawling algorithm and analyzed for the causal relationship with major variables related to stock prices. This study is considered meaningful in that it conducted research by combining cultural content, IT, and financial fields in accordance with the era of the fourth industry.

Trend Analysis of Corona Virus(COVID-19) based on Social Media (소셜미디어에 나타난 코로나 바이러스(COVID-19) 인식 분석)

  • Yoon, Sanghoo;Jung, Sangyun;Kim, Young A
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.317-324
    • /
    • 2021
  • This study deals with keywords from social media on domestic portal sites related to COVID-19, which is spreading widely. The data were collected between January 20 and August 15, 2020, and were divided into three stages. The precursor period is before COVID-19 started spreading widely between January 20 and February 17, the serious period denotes the spread in Daegu between February 18 and April 20, and the stable period is the decrease in numbers of confirmed infections up to August 15. The top 50 words were extracted and clustered based on TF-IDF. As a result of the analysis, the precursor period keywords corresponded to congestion of the Situation. The frequent keywords in the serious period were Nation and Infection Route, along with instability surrounding the Treatment of COVID-19. The most common keywords in all periods were infection, mask, person, occurrence, confirmation, and information. People's emotions are becoming more positive as time goes by. Cafes and blogs share text containing writers' thoughts and subjectivity via the internet, so they are the main information-sharing spaces in the non-face-to-face era caused by COVID-19. However, since selectivity and randomness in information delivery exists, a critical view of the information produced on social media is necessary.

A Study on the Media Recommendation System with Time Period Considering the Consumer Contextual Information Using Public Data (공공 데이터 기반 소비자 상황을 고려한 시간대별 미디어 추천 시스템 연구)

  • Kim, Eunbi;Li, Qinglong;Chang, Pilsik;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.95-117
    • /
    • 2022
  • With the emergence of various media types due to the development of Internet technology, advertisers have difficulty choosing media suitable for corporate advertising strategies. There are challenging to effectively reflect consumer contextual information when advertising media is selected based on traditional marketing strategies. Thus, a recommender system is needed to analyze consumers' past data and provide advertisers with personalized media based on the information consumers needs. Since the traditional recommender system provides recommendation services based on quantitative preference information, there is difficult to reflect various contextual information. This study proposes a methodology that uses deep learning to recommend personalized media to advertisers using consumer contextual information such as consumers' media viewing time, residence area, age, and gender. This study builds a recommender system using media & consumer research data provided by the Korea Broadcasting Advertising Promotion Corporation. Additionally, we evaluate the recommendation performance compared with several benchmark models. As a result of the experiment, we confirmed that the recommendation model reflecting the consumer's contextual information showed higher accuracy than the benchmark model. We expect to contribute to helping advertisers make effective decisions when selecting customized media based on various contextual information of consumers.

Trends in the Use of Artificial Intelligence in Medical Image Analysis (의료영상 분석에서 인공지능 이용 동향)

  • Lee, Gil-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2022
  • In this paper, the artificial intelligence (AI) technology used in the medical image analysis field was analyzed through a literature review. Literature searches were conducted on PubMed, ResearchGate, Google and Cochrane Review using the key word. Through literature search, 114 abstracts were searched, and 98 abstracts were reviewed, excluding 16 duplicates. In the reviewed literature, AI is applied in classification, localization, disease detection, disease segmentation, and fit degree of registration images. In machine learning (ML), prior feature extraction and inputting the extracted feature values into the neural network have disappeared. Instead, it appears that the neural network is changing to a deep learning (DL) method with multiple hidden layers. The reason is thought to be that feature extraction is processed in the DL process due to the increase in the amount of memory of the computer, the improvement of the calculation speed, and the construction of big data. In order to apply the analysis of medical images using AI to medical care, the role of physicians is important. Physicians must be able to interpret and analyze the predictions of AI algorithms. Additional medical education and professional development for existing physicians is needed to understand AI. Also, it seems that a revised curriculum for learners in medical school is needed.

Big Data Management in Structured Storage Based on Fintech Models for IoMT using Machine Learning Techniques (기계학습법을 이용한 IoMT 핀테크 모델을 기반으로 한 구조화 스토리지에서의 빅데이터 관리 연구)

  • Kim, Kyung-Sil
    • Advanced Industrial SCIence
    • /
    • v.1 no.1
    • /
    • pp.7-15
    • /
    • 2022
  • To adopt the development in the medical scenario IoT developed towards the advancement with the processing of a large amount of medical data defined as an Internet of Medical Things (IoMT). The vast range of collected medical data is stored in the cloud in the structured manner to process the collected healthcare data. However, it is difficult to handle the huge volume of the healthcare data so it is necessary to develop an appropriate scheme for the healthcare structured data. In this paper, a machine learning mode for processing the structured heath care data collected from the IoMT is suggested. To process the vast range of healthcare data, this paper proposed an MTGPLSTM model for the processing of the medical data. The proposed model integrates the linear regression model for the processing of healthcare information. With the developed model outlier model is implemented based on the FinTech model for the evaluation and prediction of the COVID-19 healthcare dataset collected from the IoMT. The proposed MTGPLSTM model comprises of the regression model to predict and evaluate the planning scheme for the prevention of the infection spreading. The developed model performance is evaluated based on the consideration of the different classifiers such as LR, SVR, RFR, LSTM and the proposed MTGPLSTM model and the different size of data as 1GB, 2GB and 3GB is mainly concerned. The comparative analysis expressed that the proposed MTGPLSTM model achieves ~4% reduced MAPE and RMSE value for the worldwide data; in case of china minimal MAPE value of 0.97 is achieved which is ~ 6% minimal than the existing classifier leads.

Study of Improved CNN Algorithm for Object Classification Machine Learning of Simple High Resolution Image (고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘 연구)

  • Hyeopgeon Lee;Young-Woon Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • A convolutional neural network (CNN) is a representative algorithm for implementing artificial neural networks. CNNs have improved on the issues of rapid increase in calculation amount and low object classification rates, which are associated with a conventional multi-layered fully-connected neural network (FNN). However, because of the rapid development of IT devices, the maximum resolution of images captured by current smartphone and tablet cameras has reached 108 million pixels (MP). Specifically, a traditional CNN algorithm requires a significant cost and time to learn and process simple, high-resolution images. Therefore, this study proposes an improved CNN algorithm for implementing an object classification learning model for simple, high-resolution images. The proposed method alters the adjacency matrix value of the pooling layer's max pooling operation for the CNN algorithm to reduce the high-resolution image learning model's creation time. This study implemented a learning model capable of processing 4, 8, and 12 MP high-resolution images for each altered matrix value. The performance evaluation result showed that the creation time of the learning model implemented with the proposed algorithm decreased by 36.26% for 12 MP images. Compared to the conventional model, the proposed learning model's object recognition accuracy and loss rate were less than 1%, which is within the acceptable error range. Practical verification is necessary through future studies by implementing a learning model with more varied image types and a larger amount of image data than those used in this study.

DoS/DDoS attacks Detection Algorithm and System using Packet Counting (패킷 카운팅을 이용한 DoS/DDoS 공격 탐지 알고리즘 및 이를 이용한 시스템)

  • Kim, Tae-Won;Jung, Jae-Il;Lee, Joo-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.151-159
    • /
    • 2010
  • Currently, by using the Internet, We can do varius things such as Web surfing, email, on-line shopping, stock trading on your home or office. However, as being out of the concept of security from the beginning, it is the big social issues that malicious user intrudes into the system through the network, on purpose to steal personal information or to paralyze system. In addition, network intrusion by ordinary people using network attack tools is bringing about big worries, so that the need for effective and powerful intrusion detection system becomes very important issue in our Internet environment. However, it is very difficult to prevent this attack perfectly. In this paper we proposed the algorithm for the detection of DoS attacks, and developed attack detection tools. Through learning in a normal state on Step 1, we calculate thresholds, the number of packets that are coming to each port, the median and the average utilization of each port on Step 2. And we propose values to determine how to attack detection on Step 3. By programing proposed attack detection algorithm and by testing the results, we can see that the difference between the median of packet mounts for unit interval and the average utilization of each port number is effective in detecting attacks. Also, without the need to look into the network data, we can easily be implemented by only using the number of packets to detect attacks.

Optimizing Locations for Micro-mobility Parking Area based on User Big-data Analysis (빅데이터 기반 공유형 마이크로 모빌리티의 주차시설 입지 최적화 연구)

  • Choi, Nakhyeon;Kim, Junghwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.195-206
    • /
    • 2023
  • Most of the Micro-mobility parking in Korea use Dockless system. However, Dockless can result in cluttering, infrastructure deficiencies, and safety challenges as has been observed in cities. It is necessary to introduce a Station Parking system in order to solve the drawbacks of the dockless, but the introduction without engineering has low accessibility and induces side effects. In this study, to decide optimal location about number of the Micro-mobility Station, we has been applied the MCLP model about the coverage range, usage demand, usage time in order to classify the type of Micro-mobility Station. For the MCLP, User Date input to reflect realistic demand in Bundang new town, Korea. The result show that the optimal number of facilities in 400 m was 146, and the coverage ratio was 99.83 %, which was most suitable coverage for solving the parking problem. We also classified the demand into 4 levels and the usage time into 3 levels, and by crossing them, we were able to classify the Parking lot types into 12 types. It is possible to propose strategic policies in the installation and operation of Micro-mobility Parking System.

A Study on the Residence Preference and Purchase Satisfaction of Bakery Product Purchasers (주거지에 따른 베이커리 제품의 선호도와 구매 만족도)

  • Lee, Sook-Eun;Han, Gyeong-Phil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.147-160
    • /
    • 2022
  • The purpose of this study was to investigate in the residence and the income preference and purchase satisfaction of Bakery Product Purchasers. The findings of survey showed that in general characteristics of respondents, Out of the total 1,235 people, 59.6% of them were women, 40.4% of them were men, so the number of females was slightly higher than that of males, and the number of consumers living in big cities was 53.0% and that of small & medium-sized cities was 47.0%. In their preference of bakery products, bakery products liked the most 'plain white bread'(56.5%), 'sandwich products'(26.0 %), 'naturally fermented bread and health bread'(24.5%), and 'cakes'(20.6%) and 'Bread and coffee, and beverages'(I7.2%) in order. In terms of income, they preferred 'naturally fermented bread and health bread' as income rose(p<0.001), and they preferred 'cakes'(p<0.001) and 'sandwich products'(0.001) as income went down. In bakery products satisfaction, bakery products were satisfied with its 'quality and taste'(M=3.76), 'freshness'(M=3.64), 'good quality of materials'(M=3.40), and 'functional products for sale'(M=3.31), and 'nutrients'(M=3.24) in order. In residential areas, both people in big cities in Seoul and small and medium sized cities considered the 'quality and taste'(p<0.05) and the 'freshness'(p<0.05) to be important.

Detecting Vehicles That Are Illegally Driving on Road Shoulders Using Faster R-CNN (Faster R-CNN을 이용한 갓길 차로 위반 차량 검출)

  • Go, MyungJin;Park, Minju;Yeo, Jiho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.105-122
    • /
    • 2022
  • According to the statistics about the fatal crashes that have occurred on the expressways for the last 5 years, those who died on the shoulders of the road has been as 3 times high as the others who died on the expressways. It suggests that the crashes on the shoulders of the road should be fatal, and that it would be important to prevent the traffic crashes by cracking down on the vehicles intruding the shoulders of the road. Therefore, this study proposed a method to detect a vehicle that violates the shoulder lane by using the Faster R-CNN. The vehicle was detected based on the Faster R-CNN, and an additional reading module was configured to determine whether there was a shoulder violation. For experiments and evaluations, GTAV, a simulation game that can reproduce situations similar to the real world, was used. 1,800 images of training data and 800 evaluation data were processed and generated, and the performance according to the change of the threshold value was measured in ZFNet and VGG16. As a result, the detection rate of ZFNet was 99.2% based on Threshold 0.8 and VGG16 93.9% based on Threshold 0.7, and the average detection speed for each model was 0.0468 seconds for ZFNet and 0.16 seconds for VGG16, so the detection rate of ZFNet was about 7% higher. The speed was also confirmed to be about 3.4 times faster. These results show that even in a relatively uncomplicated network, it is possible to detect a vehicle that violates the shoulder lane at a high speed without pre-processing the input image. It suggests that this algorithm can be used to detect violations of designated lanes if sufficient training datasets based on actual video data are obtained.