• Title/Summary/Keyword: BIG4

Search Result 3,612, Processing Time 0.033 seconds

A Study of Analyzing Realtime Strategy Game Data using Data Mining (Data Mining을 이용한 전략시뮬레이션 게임 데이터 분석)

  • Yong, Hye-Ryeon;Kim, Do-Jin;Hwang, Hyun-Seok
    • Journal of Korea Game Society
    • /
    • v.15 no.4
    • /
    • pp.59-68
    • /
    • 2015
  • The progress in Information & Communication Technology enables data scientists to analyze big data for identifying peoples' daily lives and tacit preferences. A variety of industries already aware the potential usefulness of analyzing big data. However limited use of big data has been performed in game industry. In this research, we adopt data mining technique to analyze data gathered from a strategic simulation game. Decision Tree, Random Forest, Multi-class SVM, and Linear Regression techniques are used to find the most important variables to users' game levels. We provide practical guides for game design and usability based on the analyzed results.

A Study on Extraction of Useful Information from Big dataset of Multi-attributes - Focus on Single Household in Seoul - (다속성 빅데이터로부터 유용한 정보 추출에 관한 연구 - 서울시 1인 가구를 중심으로 -)

  • Choi, Jung-Min;Kim, Kun-Woo
    • Journal of the Korean housing association
    • /
    • v.25 no.4
    • /
    • pp.59-72
    • /
    • 2014
  • This study proposes a data-mining analysis method for examining variable multi-attribute big-data, which is considered to be more applicable in social science using a Correspondence Analysis of variables obtained by AIC model selection. The proposed method was applied on the Seoul Survey from 2005 to 2010 in order to extract interesting rules or patterns on characteristics of single household. The results found as follows. Firstly, this paper illustrated that the proposed method is efficiently able to apply on a big dataset of huge categorical multi attributes variables. Secondly, as a result of Seoul Survey analysis, it has been found that the more dissatisfied with residential environment the higher tendency of residential mobility in single household. Thirdly, it turned out that there are three types of single households based on the characteristics of their demographic characteristics, and it was different from recognition of home and partner of counselling by the three types of single households. Fourthly, this paper extracted eight significant variables with a spatial aggregated dataset which are highly correlated to the ratio of occupancy of single household in 25 Seoul Municipals, and to conclude, it investigated the relation between spatial distribution of single households and their demographic statistics based on the six divided groups obtained by Cluster Analysis.

Tendency and Network Analysis of Diet Using Big Data (빅데이터를 활용한 다이어트 현황 및 네트워크 분석)

  • Jung, Eun-Jin;Chang, Un-Jae
    • Journal of the Korean Dietetic Association
    • /
    • v.22 no.4
    • /
    • pp.310-319
    • /
    • 2016
  • Limitation of a questionnaire survey which is widely used is time and money, limited numbers of participants, biased confidence interval and unreliable results. To overcome these, we performed tendency and network analysis of diet using big Data in Koreans. The keyword on diet were collected from the portal site Naver from January 1, 2015 until December 31, 2015 and collected data were analyzed by simple frequency analysis, N-gram analysis, keyword network analysis and seasonality analysis. The results showed that diet menu appeared most frequently by N-gram analysis, even though exercise had the highest frequency by simple frequency analysis. In addition, keyword network analysis were categorized into four groups: diet group, exercise group, commercial diet program company group and commercial diet food group. The analysis of seasonality showed that subjects' interests in diet had increased steadily since February, 2015, although subjects were most interested indiet in July, these results suggest that the best strategies for weight loss are based on diet menu and starting diet before July. As people are especially sensitive to diet trends, researches are needed about annual analysis of big data.

A Study on the Accounts Balancing Time of Small Distributed Power Trading Platform Using Block Chain Network (블록체인 네트워크를 이용한 소규모 분산전력 거래플랫폼의 정산소요시간에 관한 연구)

  • Kim, Young-Gon;Heo, Keol;Choi, Jung-In;Wie, Jae-Woo
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.86-91
    • /
    • 2018
  • This paper is a review of accounts balancing time in small distributed power trading platform using blockchain technology. First, the national VPP energy management system using the AMI applied to this study is introduced and then the accounts balancing time and process of the cryptocurrency coin payment which based on the power generation of pro-consumer certified by power big data analysis in a test bed environment is discussed. Futhermore the configuration of a power Big Data analysis system with GPU Fast Big Data that applies MapD to current lambda architecture is also introduced.

Interactions of Behavioral Changes in Smoking, High-risk Drinking, and Weight Gain in a Population of 7.2 Million in Korea

  • Kim, Yeon-Yong;Kang, Hee-Jin;Ha, Seongjun;Park, Jong Heon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.4
    • /
    • pp.234-241
    • /
    • 2019
  • Objectives: To identify simultaneous behavioral changes in alcohol consumption, smoking, and weight using a fixed-effect model and to characterize their associations with disease status. Methods: This study included 7 000 529 individuals who participated in the national biennial health-screening program every 2 years from 2009 to 2016 and were aged 40 or more. We reconstructed the data into an individual-level panel dataset with 4 waves. We used a fixed-effect model for smoking, heavy alcohol drinking, and overweight. The independent variables were sex, age, lifestyle factors, insurance contribution, employment status, and disease status. Results: Becoming a high-risk drinker and losing weight were associated with initiation or resumption of smoking. Initiation or resumption of smoking and weight gain were associated with non-high-risk drinkers becoming high-risk drinkers. Smoking cessation and becoming a high-risk drinker were associated with normal-weight participants becoming overweight. Participants with newly acquired diabetes mellitus, ischemic heart disease, stroke, and cancer tended to stop smoking, discontinue high-risk drinking, and return to a normal weight. Conclusions: These results obtained using a large-scale population-based database documented interactions among lifestyle factors over time.

Smart Fire Fighting Appliances Monitoring System using GS1 based on Big Data Analytics Platform (GS1을 활용한 빅데이터 분석 플랫폼 기반의 스마트 소화기구 모니터링 시스템)

  • Park, Heum
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.57-68
    • /
    • 2018
  • This paper presents a smart firefighting appliances monitoring system based on big data analytics platform using GS1 for Smart City. Typical firefighting appliances are fire hydrant, fire extinguisher, fire alarm, sprinkler, fire engine, etc. for the fire of classes A/B/C/D/E. Among them, the dry chemical fire extinguisher have been widely supplied and 6 millions ones were replaced for the aging ones over 10 years in the past year. However, only 5% of them have been collected for recycling of chemical materials included the heavy metals of environment pollution. Therefore, we considered the trace of firefighting appliances from production to disposal for the public open service. In the paper, we suggest 1) a smart firefighting appliances system using GS1, 2) a big data analytics platform and 3) a public open service and visualization with the analyzed information, for fire extinguishers from production to disposal. It can give the information and the visualized diagrams with the analyzed data through the public open service and the free Apps.

Research Trend Analysis for Sustainable QR code use - Focus on Big Data Analysis

  • Lee, Eunji;Jang, Jikyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3221-3242
    • /
    • 2021
  • The purpose of the study is to examine the current study trend of 'QR code' and suggest a direction for the future study of big data analysis: (1) Background: study trend of 'QR code' and analysis of the text by subject field and year; (2) Methodology: data scraping and collection, EXCEL summary, and preprocess and big data analysis by R x 64 4.0.2 program package; (3) the findings: first, the trend showed a continuous increase in 'QR code' studies in general and the findings were applied in various fields. Second, the analysis of frequent keywords showed somewhat different results by subject field and year, but the overall results were similar. Third, the visualization of the frequent keywords also showed similar results as that of frequent keyword analysis; and (4) the conclusions: in general, 'QR code' studies are used in various fields, and the trend is likely to increase in the future as well. And the findings of this study are a reflection that 'QR code' is an aspect of our social and cultural phenomena, so that it is necessary to think that 'QR code' is a tool and an application of information. An expansion of the scope of the analysis is expected to show us more meaningful indications on 'QR code' study trends and development potential.

A Study on Design of Real-time Big Data Collection and Analysis System based on OPC-UA for Smart Manufacturing of Machine Working

  • Kim, Jaepyo;Kim, Youngjoo;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2021
  • In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.

Big Numeric Data Classification Using Grid-based Bayesian Inference in the MapReduce Framework

  • Kim, Young Joon;Lee, Keon Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.313-321
    • /
    • 2014
  • In the current era of data-intensive services, the handling of big data is a crucial issue that affects almost every discipline and industry. In this study, we propose a classification method for large volumes of numeric data, which is implemented in a distributed programming framework, i.e., MapReduce. The proposed method partitions the data space into a grid structure and it then models the probability distributions of classes for grid cells by collecting sufficient statistics using distributed MapReduce tasks. The class labeling of new data is achieved by k-nearest neighbor classification based on Bayesian inference.

Improvement of the Parallel Importation Logistics Process Using Big Data

  • Park, Doo-Jin;Kim, Woo-Sun
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.267-273
    • /
    • 2019
  • South Korea has allowed parallel importation since 1995. Parallel importation causes competition among importers in the logistics process allowing, consumers to purchase foreign brand products at low prices. Most parallel importers base product pricing on subjective judgements. Fashion products in particular, have different sales rates depending on trends and seasons, so sales performance varies greatly depending on selling price timing and policy. The merchandiser (MD) set the price on parallel importation products by aggregating information on imported products and pricing goods. However, this customized process is very time consuming for the MD. This is because the logistics process of parallel importation's customs clearance procedures and repair works is complicated and takes a significant amount of time. In this paper, we propose an improved parallel importation logistics process based on big data, which automatically sets the price of parallel importation products.