• 제목/요약/키워드: BHMT Activity

검색결과 2건 처리시간 0.015초

Effects of Betaine on Performence, Carcass Characteristics and Hepatic Betaine-homocysteine Methyltransferase Activity in Finishing Barrows

  • Feng, J.;Liu, X.;Wang, Y.Z.;Xu, Z.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권3호
    • /
    • pp.402-405
    • /
    • 2006
  • This experiment was conducted to determine the effect of dietary betaine (0, 0.125%) on performance, carcass composition, pork quality and hepatic betaine-homocysteine methyltransferase (BHMT) activity of crossbred finishing barrows. Three replicates of ten pigs were used for each treatment. The results showed that average daily gain, feed intake and feed conversion were not affected by betaine. Compared with the control group, pigs treated with betaine had a 8.17% (p<0.05) decrease in carcass fat percentage, and a 8.84% (p<0.05) reduction in 10th-rib backfat thickness, but dressing percentage, percentage lean, longissimus muscle area, and average backfat thickness were not affected. There were also no significant differences in muscle color score, marbling score, pork pH value and water loss rate between the control and betaine-treated groups. Hepatic betaine-homocysteine methyltransferase (BHMT) activity was significantly increased by 13.97% (p<0.05) when pigs were offered 0.125% betaine.

Rat Liver 10-formyltetrahydrofolate Dehydrogenase, Carbamoyl Phosphate Synthetase 1 and Betaine Homocysteine S-methytransferase were Co-purified on Kunitz-type Soybean Trypsin Inhibitor-coupled Sepharose CL-4B

  • Kim, Hyun-Sic;Kim, Ji-Man;Roh, Kyung-Baeg;Lee, Hyeon-Hwa;Kim, Su-Jin;Shin, Young-Hee;Lee, Bok-Luel
    • BMB Reports
    • /
    • 제40권4호
    • /
    • pp.604-609
    • /
    • 2007
  • An Asp/His catalytic site of 10-formyltetrahydrofolate dehydrogenase (FDH) was suggested to have a similar catalytic topology with the Asp/His catalytic site of serine proteases. Many studies supported the hypothesis that serine protease inhibitors can bind and modulate the activity of serine proteases by binding to the catalytic site of serine proteases. To explore the possibility that soybean trypsin inhibitor (SBTI) can recognize catalytic sites of FDH and can make a stable complex, we carried out an SBTI-affinity column by using rat liver homogenate. Surprisingly, the Rat FDH molecule with two typical liver proteins, carbamoyl-phosphate synthetase 1 (CPS1) and betaine homocysteine S-methyltransferase (BHMT) were co-purified to homogeneity on SBTI-coupled Sepharose and Sephacryl S-200 followed by Superdex 200 FPLC columns. These three liver-specific proteins make a protein complex with 300 kDa molecular mass on the gel-filtration column chromatography in vitro. Immuno-precipitation experiments by using anti-FDH and anti-SBTI antibodies also supported the fact that FDH binds to SBTI in vitro and in vivo. These results demonstrate that the catalytic site of rat FDH has a similar structure with those of serine proteases. Also, the SBTI-affinity column will be useful for the purification of rat liver proteins such as FDH, CPS1 and BHMT.