• Title/Summary/Keyword: BGN

Search Result 30, Processing Time 0.029 seconds

Development of Strain-Specific Primers for Identification of Bifidobacterium bifidum BGN4

  • Youn, So Youn;Ji, Geun Eog;Han, Yoo Ri;Park, Myeong Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.909-915
    • /
    • 2017
  • Bifidobacterium bifidum BGN4 (BGN4) has many proven beneficial effects, including antiallergy and anticancer properties. It has been commercialized and used in several probiotic products, and thus strain-specific identification of this strain is very valuable for further strain-dependent physiological study. For this purpose, we developed novel multiplex polymerase chain reaction (PCR) primer sets for strain-specific detection of BGN4 in commercial products and fecal samples of animal models. The primer set was tested on seven strains of B. bifidum and 75 strains of the other Bifidobacterium species. The BGN4-specific regions were derived using megaBLAST against genome sequences of various B. bifidum databases and four sets of primers were designed. As a result, only BGN4 produced four PCR products simultaneously whereas the other strains did not. The PCR detection limit using BGN4-specific primer sets was $2.8{\times}10^1CFU/ml$ of BGN4. Those primer sets also detected and identified BGN4 in the probiotic products containing BNG4 and fecal samples from a BGN4-fed animal model with high specificity. Our results indicate that the PCR assay from this study is an efficient tool for the simple, rapid, and reliable identification of BGN4, for which probiotic strains are known.

Cloning and Heterologous Expression of the β-Galactosidase Gene from Bifidobacterium longum RD47 in B. bifidum BGN4

  • Park, Min Ju;Park, Myeong Soo;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1717-1728
    • /
    • 2019
  • The gene encoding β-galactosidase was cloned from Bifidobacterium longum RD47 with combinations of several bifidobacterial promoters, and expressed in B. bifidum BGN4. Among the recombinant bifidobacteria, BGN4+G1 showed the highest β-galactosidase level, for which the hydrolytic activity was continuously 2.5 to 4.2 times higher than that of BGN4 and 4.3 to 9.6 times higher than that of RD47. The β-galactosidase activity of BGN4+G1 was exceedingly superior to that of any of the other 35 lactic acid bacteria. When commercial whole milk and BGN4+G1 were reacted, BGN4+G1 removed nearly 50% of the lactose in the milk by the 63-h time point, and a final 61% at 93 h. These figures are about twice the lactose removal rate of conventional fermented milk. As for the reaction of commercial whole milk and crude enzyme extract from BGN4+G1, the β-galactosidase of BGN4+G1 eliminated 51% of the lactose in milk in 2 h. As shown below, we also compared the strengths and characteristics of the strong bifidobacterial promoters reported by previous studies.

Effect of Physical Properties and Bacterial Adherence Inhibition of Pit and Fissure Sealant Containing Bioactive Glass Nano Particles(BGn) (생체활성 유리 나노입자 첨가량에 따른 치면열구전색제의 물성평가와 세균부착 억제 효과)

  • Jun, Soo-Kyung;Kim, Dong-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.542-549
    • /
    • 2018
  • In this study BGn-incorporated non-fluoride release of pit and fissure sealant $Concise^{TM}$ was developed to improve the mechanical properties and promote antibacterial effect of fit and fissure sealant with the original material. The mechanical properties and antibacterial activity of BGn incorporating vary-ing amounts bioactive glass nano particles(BGn) (0,0.5,1.0 and 2.0 wt% in sealant) were characterized composition of the resulting were investigated. The solubility to aid absorption was calculated by weighing specimens with a diameter of 10 mm and a thickness of 2 mm according to ISO 4049 (2009). The antimicrobial effect was evaluated using three strains of S. mutans, S. aureus and E. coli. The absorbance of the test results was as high as the addition of BGn increased, and the lower the solubility as the solubility was added(p<0.05). Adhesion experiment results S. mutans in contrast to the control group $Concise^{TM}$, BGn-added experimental group showed a somewhat lower adherent surface but no statistically significant difference was observed (p<0.05). However S. aureus and E. coli statistical analysis indicated a significant difference for antibacterial agents between control and BGn containing(p<0.05). It seems that this BGn proved that even a antibacterial effect was demonstrated. Therefore, it was suggest that the additional effects of BGn and research on a wide range of substances.

Physical and Antibacterial Evaluation of Copper/Bioglass Nanoparticles (Cu/Bioglass Nano Particles; Cu-BGn) in Mineral Trioxide Aggregate(MTA) (구리/생체활성유리나노입자(Cu/Bioglass nano particles;Cu-BGn)를 첨가한 Mineral Trioxide Aggregate (MTA)의 물성 및 항균 평가)

  • Kim, Dong-Ae;Jun, Soo-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.425-432
    • /
    • 2020
  • For this study copper ions-containing bioactive glass nanoparticles commonly used in mineral trioxide aggregate (MTA) was developed to improve the mechanical properties and promote antibacterial effect of MTA with the original material. The mechanical properties and antibacterial activity of Cu-BGn incorporating varying amounts cooper incorporated bioactive glass nano particles(BGn) 0.5,1.0,2.0 and 4.0 wt% in MTA were characterized composition of the resulting were investigated. The compressive strength was calculated by weighing specimens with a diameter of 4 mm and a thickness of 6 mm according to ISO 6876 (2012). The antimicrobial effect was evaluated using two strains of S. mutans and E. faecalis. The mechanical properties of the test results was Cu-BGn increased no statistically significant difference was observed (p>0.05). Adhesion experiment results S. mutans in contrast to the control group Ortho MTA, 4.0 wt% of Cu-BGn added experimental group showed a significant difference was observed (p<0.05). Also, E. faecalis statistical analysis indicated a significant difference for antibacterial agents between control and Cu-BGn containing(p<0.05). It seems that this Cu-BGn proved that even a antibacterial effect was demonstrated. Therefore, it was suggest that it is necessary for in-depth research into various environments that can reproduce the oral environment.

High Expression of β-Glucosidase in Bifidobacterium bifidum BGN4 and Application in Conversion of Isoflavone Glucosides During Fermentation of Soy Milk

  • You, Hyun Ju;Ahn, Hyung Jin;Kim, Jin Yong;Wu, Qian Qian;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.469-478
    • /
    • 2015
  • In spite of the reported probiotic effects, Bifidobacterium bifidum BGN4 (BGN4) showed no βglucosidase activity and failed to biotransform isoflavone glucosides into the more bioactive aglycones during soy milk fermentation. To develop an isoflavone-biotransforming BGN4, we constructed the recombinant B. bifidum BGN4 strain (B919G) by cloning the structural β-glucosidase gene from B. lactis AD011 (AD011) using the expression vector with the constitutively active promoter 919 from BGN4. As a result, B919G highly expressed β-glucosidase and showed higher β-glucosidase activity and heat stability than the source strain of the β-glucosidase gene, AD011. The biotransformation of daidzin and genistin compounds using the crude enzyme extract from B919G was completed within 4 h, and the bioconversion of daidzin and genistin in soy milk during fermentation with B919G also occurred within 6 h, which was much faster and higher than with AD011. The incorporation of this β-glucosidase-producing Bifidobacterium strain in soy milk could lead to the production of fermented soy milk with an elevated amount of bioavailable forms of isoflavones as well as to the indigenous probiotic effects of the Bifidobacterium strain.

Modulatory Activity of Bifidobacterium sp. BGN4 Cell Fractions on Immune Cells

  • Kim Nam-Ju;Ji Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.584-589
    • /
    • 2006
  • Bifidobacteria has been suggested to exert health promoting effects on the host by maintaining microbial flora and modulating immune functions in the human intestine. We assessed modulatory effects of the different cell fractions of Bifidobacterium sp. BGN4 on macrophage cells and other immune cells from the spleen and Peyer's patches (PP) of mouse. Cell free extracts (CFE) of the BGN4 fractions induced well-developed morphological changes in the macrophages and increased the phagocytic activity more effectively than other fractions in the mouse peritoneal cells. Nitric oxide (NO) production was significantly reduced by both the cell walls (CW) and CFE in the cultured cells from the spleen and PP. The production of interleukin-6 (IL-6) and interleukin-10 (IL-10) was eminent in the spleen cells treated with experimental BGN4 cell fractions. However, in the PP cells, IL-6 was slightly decreased by the treatment with the whole cell (WC) and CW, whereas IL-10 was significantly increased by the treatment with the CW and CFE. These results suggest that different types of bifidobacterial cell fractions may have differential immunomodulatory activities depending on their location within the host immune system.

Message Expansion of Homomorphic Encryption Using Product Pairing

  • Eom, Soo Kyung;Lee, Hyang-Sook;Lim, Seongan
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.123-132
    • /
    • 2016
  • The Boneh, Goh, and Nissim (BGN) cryptosytem is the first homomorphic encryption scheme that allows additions and multiplications of plaintexts on encrypted data. BGN-type cryptosystems permit very small plaintext sizes. The best-known approach for the expansion of a message size by t times is one that requires t implementations of an initial scheme; however, such an approach becomes impractical when t is large. In this paper, we present a method of message expansion of BGN-type homomorphic encryption using composite product pairing, which is practical for relatively large t. In addition, we prove that the indistinguishability under chosen plaintext attack security of our construction relies on the decisional Diffie-Hellman assumption for all subgroups of prime order of the underlying composite pairing group.

Enhancement of Anti-tumorigenic Polysaccharide Production, Adhesion, and Branch Formation of Bifidobacterium bifidum BGN4 by Phytic Acid

  • Ku, Seock-Mo;You, Hyun-Ju;Ji, Geun-Eog
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.749-754
    • /
    • 2009
  • The polysaccharide (BB-pol) extracted from Bifidobacterium bifidum BGN4 showed growth inhibitory effects on several colon cancer cell lines such as HT-29 and HCT-116. To increase the yield of polysaccharide, B. bifidum BGN4 was cultured in various culture media with different compositions. When B. bifidum BGN4 was cultured in modified MRS broth containing phytic acid, the cells showed increased branch formation and enlarged morphology. The content of total carbohydrate and the ability of adhesion to intestinal epithelial cells were also increased by phytic acid. The polysaccharide obtained from the cells grown in the presence of phytic acid inhibited the proliferation of cancer cell lines such as HT-29 and MCF-7 cells but not normal colon cell line, FHC. Taken together, Bifidobacterium grown in the presence of phytic acid may confer enhanced beneficial function for the host.

Evaluation of S-Adenosyl-L-Methionine Production by Bifidobacterium bifidum BGN4

  • Kim, Ji-Youn;Suh, Joo-Won;Ji, Geun-Eog
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.184-187
    • /
    • 2008
  • S-Adenosyl-L-methionine (SAM) is an important metabolic intermediate in living organisms and participates in many reactions as a methyl group donor. SAM has been used as a dietary supplement and is proposed to have beneficial effects on the liver and brain. The aim of this study was to find lactic acid bacteria with high SAM-producing ability to be used as SAM enhancing probiotics. We used high performance liquid chromatography (HPLC) to quantify the amount of SAM produced, and found that Bifidobacterium bifidum BGN4 produced a significantly higher amount of SAM than other Bifidobacterium or Lactobacillus strains. The effect of various carbon and nitrogen sources on SAM production was examined. This study confirmed that Bifidobacterium may be utilized as a source of SAM in the functional food industry.

Characterization of Adhesion of Bifidobacterium sp. BGN4 to Human Enterocyte-Like Caco-2 Cells

  • Kim, In-Hee;Park, Myung-Soo;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.276-281
    • /
    • 2003
  • The adhesion of probiotic bacteria to the intestinal mucosa is one of the desirable properties for their colonization in the intestinal tract, where these bacteria constantly compete with other bacteria. The adhesion of different strains of bifidobacteria to Caco-2 cells was compared. Among the strains examined, BGN-4 showed the highest adhesion level and the greatest cell surface hydrophobicity (CSH). No close relationship was found between the adhesion and CSH of the strains. Upon protease and heat treatment, the adhesion of the BGN-4 to the Caco-2 cells decreased significantly. The cells grown at $42^{\circ}C$ showed a lower CSH and self-aggregation levels than cells grown at $37^{\circ}C$. The treatment of EGTA did not have any effect on the adhesion. The degree of adhesion did not differ among the experimental groups in which galactose, mannose, or fucose were added in the adhesion assay mixture. The results suggest that the adhesion of the Bifidobacterium to the epithelial cells may be affected by the composition and structure of the cell membrane and interacting surfaces.