• Title/Summary/Keyword: BFQ scheduler

Search Result 2, Processing Time 0.016 seconds

Dynamic Bandwidth Distribution Method for High Performance Non-volatile Memory in Cloud Computing Environment (클라우드 환경에서 고성능 저장장치를 위한 동적 대역폭 분배 기법)

  • Kwon, Piljin;Ahn, Sungyong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.97-103
    • /
    • 2020
  • Linux Cgroups takes a fundamental role for sharing system resources among multiple containers on container-based cloud computing environment. Especially for I/O resource, Linux Cgroups supports a mechanism for sharing I/O bandwidth in proportion to I/O weight. However, the current mechanism of Linux Cgroups using BFQ I/O scheduler seriously degrades the I/O performance with high bandwidth storage device such as NVMe SSDs. In this paper, we proposed a new feedback based I/O bandwidth sharing scheme for Linux Cgroups which allocates I/O credits to containers according to I/O weights and adjusts the amount of credits to performance fluctuation of NVMe SSDs. The proposed scheme is implemented on Linux kernel 5.3 and evaluated. The evaluation results show that it can share the I/O bandwidth among multiple containers proportionally to I/O weights while improving I/O performance more than twice as high as the existing scheme.

Implementing I/O Bandwidth Sharing Scheme between Multiple Linux Containers based on Dm-zoned for Zoned Namespace SSDs

  • Seokjun Lee;Sungyong Ahn
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.237-245
    • /
    • 2023
  • In the cloud service, system resource such as CPU, memory, I/O bandwidth are shared among multiple users. Particularly, in Linux containers environment, I/O bandwidth is distributed in proportion to the weight of each container through the BFQ I/O scheduler. However, since the I/O scheduler can only be applied to conventional block storage devices, it cannot be applied to Zoned Namespace(ZNS) SSD, a new storage interface that has been recently studied. To overcome this limitation, in this paper, we implemented a weighted proportional I/O bandwidth sharing scheme for ZNS SSDs in dm-zoned, which emulates conventional block storage using ZNS SSDs. Each user receives a different amount of budget, which is required to process the user's I/O requests based on the user's weight. If the budget is exhausted I/O requests cannot be processed and requests are queued until the budget replenished. Each budget refill period, the budget is replenished based on the user's weight. In the experiment, as a result, we can confirm that the I/O bandwidth can be distributed on their weight as we expected.