• Title/Summary/Keyword: BEq(Boltzmann Equation)

Search Result 39, Processing Time 0.029 seconds

A Simulation of Diffusion coefficients for electrons in $SF_6$-Ar Gas Mixtures (시뮬레이션에 의한 $SF_6$-Ar혼합기체의 확산계수)

  • Seong, Nak-Jin;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.163-166
    • /
    • 2006
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range 30${\sim}$300(Td) by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2(%) and 0.5(%) $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method, The results show that the deduced longitudinal diffusion coefficients and transverse diffusion coefficients agree reasonably well with theoretical for a rang of E/N values The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Energy Distribution Function in $SF_6-Ar$ Mixtures Gas used by Simulation (MCS-BEq 시뮬레이션에 의한 $SF_6-Ar$ 에너지 분포함수)

  • Kim, Sang-Nam
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.193-196
    • /
    • 2007
  • Energy distribution function for electrons in $SF_6-Ar$ mixtures gas used by Simulation has been analysed over the E/N range 30${\sim}$300[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6-Ar$ mixtures were measured by time-of-flight (TOF) method. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

A Simulation of the Energy Distribution Function for Electron in $CF_4$-Ar Mixtures Gas ($CF_4$ 혼합기체(混合氣體)에서 전자(電子)에너지분포함수)

  • Kim, Sang-Nam;Seong, Nak-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.37-40
    • /
    • 2004
  • Electron swarm parameters in pure $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation(BEq.) method and the Monte Carlo simulation(MCS) The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy

  • PDF

Electron Energy Distribution Function in SF6-He Gas by Simulation (시뮬레이션에 의한 SF6-He 혼합기체에서 전자에너지 분포함수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.19-23
    • /
    • 2014
  • This paper describes the electron transport characteristics in $SF_6$-He gas calculated E/N values 0.1~700[Td] by the Monte Carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters obtained by TOF method. This study gained the values of the electron swarm parameters such as the electron drift velocity, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients for $SF_6$-He gas at a range of E/N. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

A Simulation of the Energy Distribution Function for Electron in Gas Mixtures (시뮬레이션을 이용한 혼합기체(混合氣體)에서 전자(電子)에너지분포함수)

  • Kim, Sang-Nam;Yu, Heoi-Young;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.194-198
    • /
    • 2002
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-tenn approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy

  • PDF

A Monte-Carlo method and Boltzmann Equation analysis on the electron swarm parameter in SiH$_4$+Ar mixtures gas. ($SiH_4+Ar$ 혼합기체의 전자군 파라미터에 대한 볼츠만 방정식 및 몬테 칼로법 해석)

  • 김대연;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.387-390
    • /
    • 1999
  • Electron swarm parameterdthe drift velocity and longitudinal diffusion coefficienthn $SiH_4-Ar$ mixtures containing 0.5% and 5% monosilane were measured using over the range of E/N from 0.01 to 300 Td at room temperature. Electron swarm parameters in argon were drastically changed by adding a small amount of monosilane. The electron drift velocity in both mixtures showed unusual behaviour against E/N. It had negative slope in the medium range of E/N, yet the slope was not smooth but contained a small hump. The longitudinal diffusion coefficient also showed a corresponding feature in its dependence on E/N. A two-tern approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

  • PDF

Electron Transport Characteristic in $SF_6-N_2$ Mixture Gases by MCS-BEq Simulation (시뮬레이션에 의한 $SF_6-N_2$ 혼합기체의 전자수송특성)

  • Kim, Sang-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.507-508
    • /
    • 2006
  • $SF_6$ gas is widely used in industrial of insulation field. In this paper, $N_2$ is mixed to improve pure $SF_6$ gas characteristics. Electron transport coefficients in $SF_6-N_2$ mixture gases are simulated in range of E/N values from 70 to 400 [Td] at 300K and 1 Torr by using Boltzmann equation method. The results have been obtained by using the electron collision cross sections by TOF, PT, SST sampling, compared with the experimental data determined by the other author. It also proved the reliability of the electron collision cross sections and shows the practical values of computer simulation. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

  • PDF

Characteristics of Electron Transport in $SiH_4$ Gas used by MCS-BEq Algorithm (MCS-BEq 알고리즘에 의한 $SiH_4$ 기체의 전자수송특성)

  • Kim, Sang-Nam;Seong, Nak-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.159-162
    • /
    • 2006
  • In this paper energy distribution function in $SiH_4$ has been analysed over the E/N range 0.5${\sim}$300Td and Pressure value 0.5, 1.0, 2.5 Torr by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, diffusion coefficient, electron ionization, mean energy and the electron energy distribution function. The electron energy distribution function has been analysed in $SiH_4$ at E/N=30, 50Td for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values.

  • PDF

Drift Velocities for Electrons in $SF_6$-Ar Mixtures Gas ($SF_6-Ar$-혼합기체(混合氣體)의 전자(電子) 이동속도(移動速度))

  • Kim, Sang-Nam;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1102-1105
    • /
    • 2003
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range $30{\sim}300[Td]$ by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2(%) and 0.5(%) $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method, The results show that the deduced electron drift velocities, Electrons Drift Velocities for a rang of E/N values. As a consequence, it was known that the spatial growth rates and the dielectric behaviors in $SF_6$-Ar mixtures are strongly dependent on the addition rate of $SF_6$ gas but the transport coefficients of electrons are insensitive to the addition rate of $SF_6$ gas. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Mean energy of electrons in $SF_6$-Ar Mixtures Gas ($SF_6$-Ar 혼합기체(混合氣體)의 전자(電子) 평균(平均)에너지)

  • Kim, Sang-Nam;Seong, Nak-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.75-78
    • /
    • 2003
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range $30\sim300$[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method. The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values. The transport coefficients for electrons in (0.2[%])$SF_6$-Ar and (0.5[%]$SF_6$ - Ar mixtures were measured by time-of-flight method, and the electron energy distribution function and the parameters of the velocity and the diffusion were determined by the variation of the collision cross-sections with energy. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF