• Title/Summary/Keyword: BERT-based semantic search

Search Result 2, Processing Time 0.018 seconds

Deep Learning Based Semantic Similarity for Korean Legal Field (딥러닝을 이용한 법률 분야 한국어 의미 유사판단에 관한 연구)

  • Kim, Sung Won;Park, Gwang Ryeol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.2
    • /
    • pp.93-100
    • /
    • 2022
  • Keyword-oriented search methods are mainly used as data search methods, but this is not suitable as a search method in the legal field where professional terms are widely used. In response, this paper proposes an effective data search method in the legal field. We describe embedding methods optimized for determining similarities between sentences in the field of natural language processing of legal domains. After embedding legal sentences based on keywords using TF-IDF or semantic embedding using Universal Sentence Encoder, we propose an optimal way to search for data by combining BERT models to check similarities between sentences in the legal field.

Development of a Ranking System for Tourist Destination Using BERT-based Semantic Search (BERT 기반 의미론적 검색을 활용한 관광지 순위 시스템 개발)

  • KangWoo Lee;MyeongSeon Kim;Soon Goo Hong;SuGyeong Roh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.91-103
    • /
    • 2024
  • A tourist destination ranking system was designed that employs a semantic search to extract information with reasonable accuracy. To this end the process involves collecting data, preprocessing text reviews of tourist spots, and embedding the corpus and queries with SBERT. We calculate the similarity between data points, filter out those below a specified threshold, and then rank the remaining tourist destinations using a count-based algorithm to align them semantically with the query. To assess the efficacy of the ranking algorithm experiments were conducted with four queries. Furthermore, 58,175 sentences were directly labeled to ascertain their semantic relevance to the third query, 'crowdedness'. Notably, human-labeled data for crowdedness showed similar results. Despite challenges including optimizing thresholds and imbalanced data, this study shows that a semantic search is a powerful method for understanding user intent and recommending tourist destinations with less time and costs.