최근 자연어 처리에서는 사전 학습과 전이 학습을 통하여 다양한 과제에 높은 성능 향상을 성취하고 있다. 사전 학습의 대표적 모델로 구글의 BERT가 있으며, 구글에서 제공한 다국어 모델을 포함해 한국의 여러 연구기관과 기업에서 한국어 데이터셋으로 학습한 BERT 모델을 제공하고 있다. 하지만 이런 BERT 모델들은 사전 학습에 사용한 말뭉치의 특성에 따라 이후 전이 학습에서의 성능 차이가 발생한다. 본 연구에서는 소셜미디어에서 나타나는 구어체와 신조어, 특수문자, 이모지 등 일반 사용자들의 문장에 보다 유연하게 대응할 수 있는 한국어 뉴스 댓글 데이터를 통해 학습한 KcBERT를 소개한다. 본 모델은 최소한의 데이터 정제 이후 BERT WordPiece 토크나이저를 학습하고, BERT Base 모델과 BERT Large 모델을 모두 학습하였다. 또한, 학습된 모델을 HuggingFace Model Hub에 공개하였다. KcBERT를 기반으로 전이 학습을 통해 한국어 데이터셋에 적용한 성능을 비교한 결과, 한국어 영화 리뷰 코퍼스(NSMC)에서 최고 성능의 스코어를 얻을 수 있었으며, 여타 데이터셋에서는 기존 한국어 BERT 모델과 비슷한 수준의 성능을 보였다.
본 논문에서는 UD Korean Kaist v2.3 코퍼스를 이용하여 범용 품사 태깅, 표제어추출 그리고 의존 구문분석을 동시에 예측할 수 있는 보편적 다중 작업 모델을 제안하였다. 제안 모델은 사전학습 언어모델인 다국어 BERT (Multilingual BERT)와 한국어 BERT (KR-BERT와 KoBERT)을 대상으로 추가학습 (fine-tuning)을 수행하여 BERT 모델의 자가-집중 (self-attention) 기법과 그래프 기반 Biaffine attention 기법을 적용하여 제안 모델의 성능을 비교 분석하였다.
기계 독해는 입력 받은 질문과 문단의 관계를 파악하여 알맞은 정답을 예측하는 자연어처리 태스크로 양질의 많은 데이터 셋을 필요로 한다. 기계 독해 학습 데이터 구축은 어려운 작업으로, 문서에서 등장하는 정답과 정답을 도출할 수 있는 질문을 수작업으로 만들어야 한다. 이러한 문제를 해결하기 위하여, 본 논문에서는 정답이 속한 문서로부터 질문을 자동으로 생성해주는 BERT 기반의 Sequence-to-sequence 모델을 이용한 한국어 질문 생성 모델을 제안한다. 또한 정답이 속한 문서와 질문의 언어가 같고 정답이 속한 문장의 주변 단어가 질문에 등장할 확률이 크다는 특성에 따라 BERT 기반의 Sequence-to-sequence 모델에 복사 메카니즘을 추가한다. 실험 결과, BERT + Transformer 디코더 모델의 성능이 기존 모델과 BERT + GRU 디코더 모델보다 좋았다.
최근 딥러닝 기술이 빠르게 발전함에 따라 국가 R&D 분야의 방대한 텍스트 문서를 다양한 관점에서 분석하기 위한 수요가 급증하고 있다. 특히 대용량의 말뭉치에 대해 사전학습을 수행한 BERT(Bidirectional Encoder Representations from Transformers) 언어모델의 활용에 대한 관심이 높아지고 있다. 하지만 국가 R&D와 같이 고도로 전문화된 분야에서 높은 빈도로 사용되는 전문어는 기본 BERT에서 충분히 학습이 이루어지지 않은 경우가 많으며, 이는 BERT를 통한 전문 분야 문서 이해의 한계로 지적되고 있다. 따라서 본 연구에서는 최근 활발하게 연구되고 있는 추가 사전학습을 활용하여, 기본 BERT에 국가 R&D 분야 지식을 전이한 R&D KoBERT 언어모델을 구축하는 방안을 제시한다. 또한 제안 모델의 성능 평가를 위해 보건의료, 정보통신 분야의 과제 약 116,000건을 대상으로 분류 분석을 수행한 결과, 제안 모델이 순수한 KoBERT 모델에 비해 정확도 측면에서 더 높은 성능을 나타내는 것을 확인하였다.
텍스트에서 공간 정보를 추출하기 위해 그동안 통계 및 확률 기반 방법, 심층학습 방법 등이 연구되어 왔다. 본 연구에서는 최근 자연언어처리에서 우수한 성능을 보이고 있는 BERT 모델을 적용하여 공간 개체 정보를 추출한다. 공간 개체 추출은 공간 관계에 관련된 속성 추출을 함께 고려한 결합(joint) 모델로 구성하였으며, 한국어를 대상으로 BERT 기학습된 언어모델인 korBERT를 이용하였다. 실험결과, 기존의 방법들에 비해 1.9% 포인트 이상 증가한 성능을 보였다.
감성분석이란 텍스트에 들어있는 의견이나 감성, 평가, 태도 등의 주관적인 정보를 컴퓨터를 통해 분석하는 과정이다. 본 논문은 다양한 감성분석 실험 중 감성이 드러나는 부분을 파악하여 서술어 중심의 구 혹은 절 단위로 감성 표현 영역을 추출하는 모델을 개발하고자 한다. 제안하는 모델은 BERT에 classification layer와 CRF layer를 결합한 것이고 baseline은 일반 BERT 모델이다. 실험 결과는 기존의 baseline 모델의 f1-score이 33.44%이고 제안한 BERT+CRF 모델의 f1-score이 40.99%이다. BERT+CRF 모델이 7.55% 더 좋은 성능을 보인다.
최근 많은 연구들이 BERT를 활용하여, 주어진 문맥에서 언어학/문법적으로 적절하지 않은 단어를 인지하고 찾아내는 성과를 보고하였다. 하지만 일반적으로 딥러닝 관점에서 NLL기법(Negative log-likelihood)은 주어진 문맥에서 언어 변칙에 대한 정확한 성격을 규명하기에는 어려움이 있다고 지적되고 있다. 이러한 한계를 해결하기 위하여, Li et al.(2021)은 트랜스포머 언어모델의 은닉층별 밀도 추정(density estimation)을 통한 가우시안 확률 분포를 활용하는 가우시안 혼합 모델(Gaussian Mixture Model)을 적용하였다. 그들은 트랜스포머 언어모델이 언어 변칙 예문들의 종류에 따라 상이한 메커니즘을 사용하여 처리한다는 점을 보고하였다. 이 선행 연구를 받아들여 본 연구에서는 한국어 기반 언어모델인 KoBERT나 KR-BERT도 과연 한국어의 상이한 유형의 언어 변칙 예문들을 다른 방식으로 처리할 수 있는지를 규명하고자 한다. 이를 위해, 본 연구에서는 한국어 형태통사적 그리고 의미적 변칙 예문들을 구성하였고, 이 예문들을 바탕으로 한국어 기반 모델들의 성능을 놀라움-갭(surprisal gap) 점수를 계산하여 평가하였다. 본 논문에서는 한국어 기반 모델들도 의미적 변칙 예문을 처리할 때보다 형태통사적 변칙 예문을 처리할 때 상대적으로 보다 더 높은 놀라움-갭 점수를 보여주고 있음을 발견하였다. 즉, 상이한 종류의 언어 변칙 예문들을 처리하기 위하여 다른 메커니즘을 활용하고 있음을 보였다.
자연어 표상은 자연어가 가진 정보를 컴퓨터에게 전달하기 위해 표현하는 방법이다. 현재 자연어 표상은 학습을 통해 고정된 벡터로 표현하는 것이 아닌 문맥적 정보에 의해 벡터가 변화한다. 그 중 BERT의 경우 Transformer 모델의 encoder를 사용하여 자연어를 표상하는 기술이다. 하지만 BERT의 경우 학습시간이 많이 걸리며, 대용량의 데이터를 필요로 한다. 본 논문에서는 빠른 자연어 표상 학습을 위해 의미 정보와 BERT를 결합한 개념 언어 모델을 제안한다. 의미 정보로 단어의 품사 정보와, 명사의 의미 계층 정보를 추상적으로 표현했다. 실험을 위해 ETRI에서 공개한 한국어 BERT 모델을 비교 대상으로 하며, 개체명 인식을 학습하여 비교했다. 두 모델의 개체명 인식 결과가 비슷하게 나타났다. 의미 정보가 자연어 표상을 하는데 중요한 정보가 될 수 있음을 확인했다.
악성댓글은 인터넷상에서 정서적, 심리적 피해를 주는 문제로 인식되어 왔다. 본 연구는 한국어 악성댓글 탐지 분석을 위해 KcBERT 및 다양한 모델을 활용하여 성능을 비교하였다. 또한, 공개된 한국어 악성댓글 데이터가 부족한 것을 해소하기 위해 기계 번역을 이용하고, 다국어 언어 모델(Multilingual Model) mBERT를 활용하였다. 다양한 실험을 통해 KcBERT를 미세 조정한 모델의 정확도 및 F1-score가 타 모델에 비해 의미 있는 결과임을 확인할 수 있었다.
본 논문에서 핵심적으로 연구할 내용은 기존 논문에서 소개된 BERT-base 모델의 경량화 버전인 DistilBERT 모델을 임베디드 시스템(Raspberry PI 5) 환경에 탑재 및 구현하는 것이다. 또한, 본 논문에서는 임베디드 시스템(Raspberry PI 5) 환경에 탑재한 DistilBERT 모델과 BERT-base 모델 간의 성능 비교를 수행하였다. 성능 평가에 사용한 데이터셋은 SQuAD(Standford Question Answering Dataset)로 질의응답 태스크에 대한 데이터셋이며, 성능 검증 지표로는 EM(Exact Match) Score와 F1 Score 그리고 추론시간을 사용하였다. 실험 결과를 통해 DistilBERT와 같은 경량화 모델이 임베디드 시스템(Raspberry PI 5)과 같은 환경에서 온 디바이스 AI(On-Device AI)로 잘 작동함을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.