• Title/Summary/Keyword: BCRP

Search Result 13, Processing Time 0.019 seconds

3D-culture models as drug-testing platforms in canine lymphoma and their cross talk with lymph node-derived stromal cells

  • An, Ju-Hyun;Song, Woo-Jin;Li, Qiang;Bhang, Dong-Ha;Youn, Hwa-Young
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.25.1-25.16
    • /
    • 2021
  • Background: Malignant lymphoma is the most common hematopoietic malignancy in dogs, and relapse is frequently seen despite aggressive initial treatment. In order for the treatment of these recurrent lymphomas in dogs to be effective, it is important to choose a personalized and sensitive anticancer agent. To provide a reliable tool for drug development and for personalized cancer therapy, it is critical to maintain key characteristics of the original tumor. Objectives: In this study, we established a model of hybrid tumor/stromal spheroids and investigated the association between canine lymphoma cell line (GL-1) and canine lymph node (LN)-derived stromal cells (SCs). Methods: A hybrid spheroid model consisting of GL-1 cells and LN-derived SC was created using ultra low attachment plate. The relationship between SCs and tumor cells (TCs) was investigated using a coculture system. Results: TCs cocultured with SCs were found to have significantly upregulated multidrug resistance genes, such as P-qp, MRP1, and BCRP, compared with TC monocultures. Additionally, it was revealed that coculture with SCs reduced doxorubicin-induced apoptosis and G2/M cell cycle arrest of GL-1 cells. Conclusions: SCs upregulated multidrug resistance genes in TCs and influenced apoptosis and the cell cycle of TCs in the presence of anticancer drugs. This study revealed that understanding the interaction between the tumor microenvironment and TCs is essential in designing experimental approaches to personalized medicine and to predict the effect of drugs.

The Effects of Crinum asiaticum on the Apoptosis Induction and the Reversal of Multidrug Resistance in HL-60/MX2

  • Hyun, Jae-Hee; Kang, Jung-Il;Kim, Sang-Cheol;Kim, Elvira;Kang, Ji-Hoon;Kwon, Jung-Mi;Park, Doek-Bae;Lee, Young-Jae;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Toxicological Research
    • /
    • v.24 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • The present study investigated the anti-proliferative and chemosensitizing effects of Crinum asiaticum var. japonicum against multi-drug resistant (MDR) cancer cells. The 80% methanol extract, chloroform ($CHCl_3$) fraction and butanol (BuOH) fraction of C. asiaticum inhibited the growth of mitoxantrone (MX) resistant HL-60 (HL-60/MX2) cells. When HL-60/MX2 cells were treated with the $CHCl_3$ and BuOH fractions, DNA ladder and sub-G1 hypodiploid cells were observed. Furthermore, the fractions reduced BcI-2 mRNA levels, whereas Bax mRNA levels were increased. These results suggest that the inhibitory effect of C. asiaticum on the growth of the HL-60/MX2 cells might arise from the induction of apoptosis. Treatment of HL-60/MX2 cells with the fractions markedly decreased the mRNA levels of the multi-drug resistance protein-1 and breast cancer resistance protein. The $CHCl_3$ fraction and hexane fraction increased MX accumulation in HL-60/MX2 cells. These results imply that the $CHCl_3$ fraction of C. asiaticum plays a pivotal role as a chemosensitizer. We suggest that components of C. asiaticum might have a therapeutic potential for the treatment of MDR leukemia.

Mechanistic Analysis of Taxol-induced Multidrug Resistance in an Ovarian Cancer Cell Line

  • Wang, Ning-Ning;Zhao, Li-Jun;Wu, Li-Nan;He, Ming-Feng;Qu, Jun-Wei;Zhao, Yi-Bing;Zhao, Wan-Zhou;Li, Jie-Shou;Wang, Jin-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.4983-4988
    • /
    • 2013
  • Objectives: To establish a taxol-resistant cell line of human ovarian carcinoma (A2780/Taxol) and investigate its biological features. Methods: The drug-resistant cell line (A2780/Taxol) was established by continuous stepwise selection with increasing concentrations of Taxol. Cell morphology was assessed by microscopy and growth curves were generated with in vitro and in vivo tumor xenograft models. With rhodamine123 (Rh123) assays, cell cycle distribution and the apoptotic rate were analyzed by flow cytometry (FCM). Drug resistance-related and signal associated proteins, including P-gp, MRPs, caveolin-1, PKC-${\alpha}$, Akt, ERK1/2, were detected by Western blotting. Results: A2780/Taxol cells were established with stable resistance to taxol. The drug resistance index (RI) was 430.7. Cross-resistance to other drugs was also shown, but there was no significant change to radioresistance. Compared with parental cells, A2780/Taxol cells were significantly heteromorphous, with a significant delay in population doubling time and reduced uptake of Rh123 (p<0.01). In vivo, tumor take by A2780 cells was 80%, and tumor volume increased gradually. In contrast, with A2780/Taxol cells in xenograft models there was no tumor development. FCM analysis revealed that A2780/Taxol cells had a higher percentage of G0/G1 and lower S phase, but no changes of G2 phase and the apoptosis rate. Expression of P-gp, MRP1, MRP2, BCRP, LRP, caveolin-1, PKC-${\alpha}$, Phospho-ERK1/2 and Phospho-JNK protein was significantly up-regulated, while Akt and p38 MARK protein expression was not changed in A2780/Taxol cells. Conclusion: The A2780/Taxol cell line is an ideal model to investigate the mechanism of muti-drug resistance related to overexpression of drug-resistance associated proteins and activation of the PKC-${\alpha}/ERK$ (JNK) signaling pathway.