• Title/Summary/Keyword: BCL 6

Search Result 475, Processing Time 0.023 seconds

Genome-wide association study for the interaction between BMR and BMI in obese Korean women including overweight

  • Lee, Myoungsook;Kwon, Dae Young;Kim, Myung-Sunny;Choi, Chong Ran;Park, Mi-Young;Kim, Ae-jung
    • Nutrition Research and Practice
    • /
    • v.10 no.1
    • /
    • pp.115-124
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: This is the first study to identify common genetic factors associated with the basal metabolic rate (BMR) and body mass index (BMI) in obese Korean women including overweight. This will be a basic study for future research of obese gene-BMR interaction. SUBJECTS/METHODS: The experimental design was 2 by 2 with variables of BMR and BMI. A genome-wide association study (GWAS) of single nucleotide polymorphisms (SNPs) was conducted in the overweight and obesity (BMI > $23kg/m^2$) compared to the normality, and in women with low BMR (< 1426.3 kcal/day) compared to high BMR. A total of 140 SNPs reached formal genome-wide statistical significance in this study (P < $1{\times}10^{-4}$). Surveys to estimate energy intake using 24-h recall method for three days and questionnaires for family history, a medical examination, and physical activities were conducted. RESULTS: We found that two NRG3 gene SNPs in the 10q23.1 chromosomal region were highly associated with BMR (rs10786764; $P=8.0{\times}10^{-7}$, rs1040675; $2.3{\times}10^{-6}$) and BMI (rs10786764; $P=2.5{\times}10^{-5}$, rs10786764; $6.57{\times}10^{-5}$). The other genes related to BMI (HSD52, TMA16, MARCH1, NRG1, NRXN3, and STK4) yielded P < $10{\times}10^{-4}$. Five new loci associated with BMR and BMI, including NRG3, OR8U8, BCL2L2-PABPN1, PABPN1, and SLC22A17 were identified in obese Korean women (P < $1{\times}10^{-4}$). In the questionnaire investigation, significant differences were found in the number of starvation periods per week, family history of stomach cancer, coffee intake, and trial of weight control in each group. CONCLUSION: We discovered several common BMR- and BMI-related genes using GWAS. Although most of these newly established loci were not previously associated with obesity, they may provide new insights into body weight regulation. Our findings of five common genes associated with BMR and BMI in Koreans will serve as a reference for replication and validation of future studies on the metabolic rate.

Inhibition of endoplasmic reticulum stress in high-fat-diet-induced obese C57BL/6 mice: Efficacy of a novel extract from mulberry (Morus alba) leaves fermented with Cordyceps militaris

  • Lee, Mi Rim;Bae, Su Ji;Kim, Ji Eun;Song, Bo Ram;Choi, Jun Young;Park, Jin Ju;Park, Ji Won;Kang, Mi Ju;Choi, Hyeon Jun;Choi, Young Whan;Kim, Kyung Mi;Hwang, Dae Youn
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.288-294
    • /
    • 2018
  • A few clues about correlation between endoplasmic reticulum (ER) stress and mulberry (Morus alba) leaves were investigated in only the experimental autoimmune myocarditis and streptozotocin-induced diabetes. To investigate whether a novel extract of mulberry leaves fermented with Cordyceps militaris (EMfC) could suppress ER in fatty liver, alterations in the key parameters for ER stress response were measured in high fat diet (HFD)-induced obese C57L/6 mice treated with EMfC for 12 weeks. The area of adipocytes in the liver section were significantly decreased in the HFD+EMfC treated group as compared to the HFD+Vehicle treated group, while their level was higher in HFD+Vehicle treated group than No treated group. The level of the eukaryotic initiation factor 2 alpha ($eIF2{\alpha}$) and inositol-requiring enzyme 1 beta ($IRE1{\alpha}$) phosphorylation and CCAAT-enhancer-binding protein homologous protein (CHOP) expression were remarkably enhanced in the HFD+Vehicle treated group. However, their levels were restored in the HFD+EMfC treated group, although some differences were detected in the decrease rate. Similar recovery was observed on the ER stress-induced apoptosis. The level of Caspase-3, Bcl-2 and Bax were decreased in the HFD+EMfC and HFD+orlistat (OT) treated group compared to the HFD+Vehicle treated group. The results of the present study therefore provide first evidence that EMfC with the anti-obesity effects can be suppressed ER stress and ER stress-induced apoptosis in the hepatic steatosis of HFD-induced obesity model.

Whole genome sequencing of Luxi Black Head sheep for screening selection signatures associated with important traits

  • Liu, Zhaohua;Tan, Xiuwen;Wang, Jianying;Jin, Qing;Meng, Xianfeng;Cai, Zhongfeng;Cui, Xukui;Wang, Ke
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1340-1350
    • /
    • 2022
  • Objective: Luxi Black Head sheep (LBH) is the first crossbreed specialized for meat production and was developed by crossbreeding Black Head Dorper sheep (DP) and Small Tailed Han sheep (STH) in the farming areas of northern China. Research on the genomic variations and selection signatures of LBH caused by continuous artificial selection is of great significance for identifying the genetic mechanisms of important traits of sheep and for the continuous breeding of LBH. Methods: We explored the genetic relationships of LBH, DP, and several Mongolian sheep breeds by constructing phylogenetic tree, principal component analysis and linkage disequilibrium analysis. In addition, we analysed 29 whole genomes of sheep. The genome-wide selection signatures have been scanned with four methods: heterozygosity (HP), fixation index (FST), cross-population extended haplotype homozygosity (XP-EHH) and the nucleotide diversity (𝜃π) ratio. Results: The genetic relationships analysis showed that LBH appeared to be an independent cluster closer to DP. The candidate signatures of positive selection in sheep genome revealed candidate genes for developmental process (HoxA gene cluster, BCL2L11, TSHR), immunity (CXCL6, CXCL1, SKAP2, PTK6, MST1R), growth (PDGFD, FGF18, SRF, SOCS2), and reproduction (BCAS3, TRIM24, ASTL, FNDC3A). Moreover, two signalling pathways closely related to reproduction, the thyroid hormone signalling pathway and the oxytocin signalling pathway, were detected. Conclusion: The selective sweep analysis of LBH genome revealed candidate genes and signalling pathways associated with developmental process, immunity, growth, and reproduction. Our findings provide a valuable resource for sheep breeding and insight into the mechanisms of artificial selection.

Neuroprotective effect of Coreopsis lanceolata extract against hydrogen-peroxide-induced oxidative stress in PC12 cells

  • Kyung Hye Seo;Hyung Don Kim;Jeong-Yong Park;Dong Hwi Kim;Seung-Eun Lee;Gwi Young Jang;Yun-Jeong Ji;Ji Yeon Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.175-184
    • /
    • 2022
  • The present study investigated the neuroprotective effects of Coreopsis lanceolate extract against hydrogen-peroxide (H2O2)-induced oxidative damage and cell death in pheochromocytoma 12 (PC12) cells. Reactive oxygen species (ROS), 2,2'-azinobis (3-ethylbebzothiazoloine-6-sulfonic acid) diammonium salt, and 1,1-diphenyl-2-picrrylhydrazyl radical scavenging activities, as well as the expression levels of proteins associated with oxidative damage and cell death were investigated. According to the results, C. lanceolate extract exhibited inhibitory activity against intracellular ROS generation and cell-damaging effects induced by hydroxyl radicals in a dose-dependent manner. Total phenolic and flavonoid contents were 22.3 mg·g-1 gallic acid equivalent and 16.2 mg·g-1 catechin equivalent, respectively. Additionally, a high-performance liquid chromatography (HPLC) assay based on the internal standard method used to detect phenolic compounds. The phenolic compounds identified in C. lanceolata extract contained (+)-catechin hydrate (5.0 ± 0.0 mg·g-1), ferulic acid (1.6 ± 0.0 mg·g-1), chlorogenic acid (1.5 ± 0.0 mg·g-1), caffeic acid (1.2 ± 0.0 mg·g-1), naringin (0.9 ± 0.0 mg·g-1), and p-coumaric acid (0.5 ± 0.0 mg·g-1). C. lanceolata extract attenuated pro-apoptotic Bax expression levels and enhanced the expression levels of anti-apoptotic Bcl-2, caspase-3, and caspase-9 proteins. Therefore, C. lanceolata is a potential source of materials with neuroprotective properties against neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases.

Neuroprotective effects of hesperetin on H2O2-induced damage in neuroblastoma SH-SY5Y cells

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • v.17 no.5
    • /
    • pp.899-916
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Oxidative stress is a fundamental neurodegenerative disease trigger that damages and decimates nerve cells. Neurodegenerative diseases are chronic central nervous system disorders that progress and result from neuronal degradation and loss. Recent studies have extensively focused on neurodegenerative disease treatment and prevention using dietary compounds. Heseperetin is an aglycone hesperidin form with various physiological activities, such as anti-inflammation, antioxidant, and antitumor. However, few studies have considered hesperetin's neuroprotective effects and mechanisms; thus, our study investigated this in hydrogen peroxide (H2O2)-treated SH-SY5Y cells. MATERIALS/METHODS: SH-SY5Y cells were treated with H2O2 (400 µM) in hesperetin absence or presence (10-40 µM) for 24 h. Three-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell viability, and 4',6-diamidino-2-phenylindole staining allowed us to observe nuclear morphology changes such as chromatin condensation and apoptotic nuclei. Reactive oxygen species (ROS) detection assays measured intracellular ROS production; Griess reaction assays assessed nitric oxide (NO) production. Western blotting and quantitative polymerase chain reactions quantified corresponding mRNA and proteins. RESULTS: Subsequent experiments utilized various non-toxic hesperetin concentrations, establishing that hesperetin notably decreased intracellular ROS and NO production in H2O2-treated SH-SY5Y cells (P < 0.05). Furthermore, hesperetin inhibited H2O2-induced inflammation-related gene expression, including interluekin-6, tumor necrosis factor-α, and nuclear factor kappa B (NF-κB) p65 activation. In addition, hesperetin inhibited NF-κB translocation into H2O2-treated SH-SY5Y cell nuclei and suppressed mitogen-activated protein kinase protein expression, an essential apoptotic cell death regulator. Various apoptosis hallmarks, including shrinkage and nuclear condensation in H2O2-treated cells, were suppressed dose-dependently. Additionally, hesperetin treatment down-regulated Bax/Bcl-2 expression ratios and activated AMP-activated protein kinase-mammalian target of rapamycin autophagy pathways. CONCLUSION: These results substantiate that hesperetin activates autophagy and inhibits apoptosis and inflammation. Hesperetin is a potentially potent dietary agent that reduces neurodegenerative disease onset, progression, and prevention.

Inhibitory Mechanisms of Cell Cycle Regulation Induced by Indole-3-carbinol in Hepatocellular Carci-noma HepG2 Cells. (간암 세포주에서의 Indole-3-Carbinol에 의해 유도되는 세포주기 억제 기전)

  • 김동우;이광수;김민경;조율희;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.181-185
    • /
    • 2001
  • The naturally occurring chemical indole-3-carbinol (13C), found in vegetables of the Brassica genus, is a promising anticancer agent that was shown previ- ously to induce a Gl cell cycle arrest of human breast cancer cell lines, independent of estrogen receptor signaling. The anticancer activity of 13C and the possible mechanisms of its action were explored in a human hepatocellular carcinoma cell line, HepG2. Treatment of HepG2 cells with 13C suppressed the growth of the cells. The growth sup- pression caused by 13C ($IC_{50}$/: 444$\mu$M) was found to be partially due to its ability to stop the cell cycle in HepG2 cells. Western blot analysis for the Gl phase artiest demonstrated that the expression-levels of cyclin-dependent kinase (Cdk4, Cdk6) and cyclic D were reduced strongly after treatment of Hep72 cells with 13C (4007M) for 24- 72 hrs. Furthermore, I3C selectively abolished the expression of Cdk6 in a dose- and time-dependent manner, and accordingly, inhibited the phosphorylation of retinoblastoma. Interestingly, after the HepG2 cells reached their max- imal growth arrest, the level of the p21, a well-known Cdk inhibitor, increased significantly. Therefore, it could be considered that the Gl arrest of HepG2 cells treated with 13C was due to the indirect inhibition of Cdk4/6 activities by p21 Western blot analysis for G2/M phase arrest of demonstrated the levels of Cdc2 and cyclin Bl werer reduced dramatically after the treatment of HepG2 cells with 13C ($40\mu$M) for 24-72 hrs. flow cytometry of propidium iodide-stained HepG2 cells revealed that 13C induces a Gl (53%,72hr incubation) and G2 (25%,24hr incubation) cell cycle arrest. Thus, our observations have uncovered a previously undefined antiproliferative pathway for r3C that implicates Cdk4/6 and Cdc2 as a target for cell cycle control in human HepG2 cells. However, the 13C-medi- ated cell cycle arrest and repression of Cdk4/6 production did not affect the apoptotic induction of HepG2 cell.

  • PDF

Transcriptome Analyses for the Anti-Adipogenic Mechanism of an Herbal Composition (생약복합물의 지방세포형성억제 기전규명을 위한 전사체 분석)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Bae, Sung-Min;Chae, Soo-Ahn;Lee, Jung-Ju;Oh, Dong-Jin;Park, Suk-Won;Cho, Soo-Hyun;Shim, Yae-Jie;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1054-1065
    • /
    • 2010
  • SH21B is a natural composition composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). In our previous study, we reported that SH21B inhibited adipogenesis and fat accumulation in 3T3-L1 cells through modulation of various regulators in the adipogenesis pathway. The aim of this study was to analyze the transcriptome profiles for the anti-adipogenic effects of SH21B in 3T3-L1 cells. Total RNAs from SH21B-treated 3T3-L1 cells were reverse-transcribed into cDNAs and hybridized to Affymetrix Mouse Gene 1.0 ST array. From microarray analyses, we identified 2,568 genes of which expressions were changed more than two-fold by SH21B, and the clustering analyses of these genes resulted in 9 clusters. Three clusters among the 9 showed down-regulation by SH21B (cluster 4, cluster 6 and cluster 9), and two clusters showed up-regulation by SH21B (cluster 7 and cluster 8) during the adipogenesis of 3T3-L1 cells. It was found that many genes related to cell proliferation and adipogenesis were included in these clusters. Clusters 4, 6 and 9 included genes which were related with adipogenesis induction and cell cycle arrest. Clusters 7 and 8 included genes related to cell proliferation as well as adipogenesis inhibition. These results suggest that the mechanisms of the anti-adipogenic effects of SH21B may be the modulation of genes involved in cell proliferation and adipogenesis.

Plumbagin from Plumbago Zeylanica L Induces Apoptosis in Human Non-small Cell Lung Cancer Cell Lines through NF-κB Inactivation

  • Xu, Tong-Peng;Shen, Hua;Liu, Ling-Xiang;Shu, Yong-Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2325-2331
    • /
    • 2013
  • Objective: To detect effects of plumbagin on proliferation and apoptosis in non-small cell lung cancer cell lines, and investigate the underlying mechanisms. Materials and Methods: Human non-small cell lung cancer cell lines A549, H292 and H460 were treated with various concentrations of plumbagin. Cell proliferation rates was determined using both cell counting kit-8 (CCK-8) and clonogenic assays. Apoptosis was detected by annexin V/propidium iodide double-labeled flow cytometry and TUNEL assay. The levels of reactive oxygen species (ROS) were detected by flow cytometry. Activity of NF-${\kappa}B$ was examined by electrophoretic mobility shift assay (EMSA) and luciferase reporter assay. Western blotting was used to assess the expression of both NF-${\kappa}B$ regulated apoptotic-related gene and activation of p65 and $I{\kappa}B{\kappa}$. Results: Plumbagin dose-dependently inhibited proliferation of the lung cancer cells. The IC50 values of plumbagin in A549, H292, and H460 cells were 10.3 ${\mu}mol/L$, 7.3 ${\mu}mol/L$, and 6.1 ${\mu}mol/L$ for 12 hours, respectively. The compound concentration-dependently induced apoptosis of the three cell lines. Treatment with plumbagin increased the intracellular level of ROS, and inhibited the activation of NK-${\kappa}B$. In addition to inhibition of NF-${\kappa}B$/p65 nuclear translocation, the compound also suppressed the degradation of $I{\kappa}B{\kappa}$. ROS scavenger NAC highly reversed the effect of plumbagin on apoptosis and inactivation of NK-${\kappa}B$ in H460 cell line. Treatment with plumbagin also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl-2, upregulated the expression of Bax, Bak, and CytC. Conclusions: Plumbagin inhibits cell growth and induces apoptosis in human lung cancer cells through an NF-${\kappa}B$-regulated mitochondrial-mediated pathway, involving activation of ROS.

Hsp90 Inhibitor, 17-AAG, Affects Early Embryonic Development and Apoptosis of Bovine Embryos (Hsp90의 저해제인 17-AAG의 처리에 따른 소 수정란의 배발달 및 세포사멸 양상)

  • Hong, Joo-Hee;Min, Sung-Hun;Lee, E-Nok;Son, Hyeong-Hoon;Park, Hum-Dai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.307-311
    • /
    • 2011
  • Heat shock protein 90 (Hsp90) is ATPase-directed molecular chaperon and affects survival of several cells. In our previous study, inhibitory effect of Hsp90 by inducing cell cycle arrest and apoptosis in the pig embryonic and primary cells was reported. However, its role during early bovine embryonic development is not sufficient. In this study, we traced the effects of Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on early bovine embryonic development. We also investigated several indicators of developmental potential, including structural integrity, gene expression (apoptosis-related genes), and apoptosis, which are affected by 17-AAG. Bovine embryos were cultured in the CR1-aa medium with or without 17-AAG for 7 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without 17-AAG ($33.1{\pm}9.6$ vs $21.7{\pm}8.3%$). The structural integrity of the blastocysts was examined by differential staining. Blastocysts from the dbcAMP-treated group had higher numbers of ICM, TE, and total cells than those from the untreated group. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 17-AAG treated group compared with control (11.2 vs 3.9, respectively). Blastocysts that developed in the 17-AAG treated group had low structural integrity and high apoptotic nuclei than those of the untreated control, resulting in decrease the embryonic qualities of preimplantation bovine blastocysts. The mRNA expression of the pro-apoptotic gene (Bax) increased in 17-AAG treated group, whereas expression of the antiapoptotic gene (Bcl-XL) decreased. In conclusion, Hsp90 also appears to play a direct role in bovine early embryo developmental competence including structural integrity of blastocysts. Also, these results indicate that Hsp90 is closely associated with apoptosis-related genes expression in developing bovine embryos.

STUDY ON mRNA EXPRESSION OF P21 AND P73 IN THE CELL LINES OF PRIMARY AND METASTATIC SQUAMOUS CELL CARCINOMA (원발성 및 전이성 구강편평세포암종 세포주에서 p21 및 p73 mRNA발현에 관한 연구)

  • Kang, Jeong-Hoon;Kim, Kyung-Wook;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.6
    • /
    • pp.483-490
    • /
    • 2001
  • There were many controversies in the cause and progress of tumorigenesis. Recently, studies on the mutation of genes related to the tumor have extensively been performed due to development of molecular biology. Structural and morphological changes of chromosomes, which are related to the abnormal activation of oncogenes or inactivation of tumor suppression genes, transform the normal cells into the tumor cells. p53 and Rb are well known tumor suppressor genes, while oncogenes include c-myc, bcl-2 and ras, etc. When exposed to cell damaging agents, p53 inhibits cell growth by inducing transcription of p21. Especially p73, which is homo-logy of p53, frequently deleted in melanoma, neuroblastoma, colon cancer, and breast cancer, when over produced, p73 activates the transcription of p21, bax-1 and inhibits cell growth by inducing apoptosis. For study on mRNA expression of p21 and p73, normal oral keratinocytes, and cell lines of primary and metastatic oral squamous cell carcinoma were cultured and then electrophoresis and RT-PCR(reverse transcription-polymerase chain reaction) were performed. 1. The mRNA of p21 and p73 in normal oral keratinocyte expressed lower than that of primary squamous cell carcinoma. 2. The mRNA of p21 in metastatic oral squamous carcinoma cell lines was expressed as various patterns compared with that of normal oral keratinocyte. 3. In the metastatic oral squamous cell lines, the mRNA of HN8 expressed higher than that of HN12 or HN19. 4. The mRNA of p73 in primary oral squamous cell lines expressed 4-5 times higher than that of normal keratinocyte. 5. In metastatic oral squamous cell lines, there was no significant expression of p73 mRNA compared with that of normal oral keratinocyte. From the results obtained in this study, mRNA expression of p73 in primary oral squamous cell lines was remarkable, while mRNA expression of p21 and p73 in metastatic oral squamous cell lines were statistically insignificant.

  • PDF