• Title/Summary/Keyword: BASIN MANAGEMENT

Search Result 813, Processing Time 0.029 seconds

Cost Allocation of River Water Quality Management Considering Development in Upper Basin and Total Pollution Load Management System (상류지역 개발과 오염총량관리제를 고려한 하천수질관리 비용분담 방안)

  • Yeo, Kyu-Dong;Kim, Gil-Ho;Jung, Young-Hun;Lee, Sang-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.822-822
    • /
    • 2012
  • 본 연구는 상류의 개발행위와 더불어 현재 수질관리의 기준이 되는 오염총량관리제를 대상으로 '규모의 경제'의 논리를 따른다는 가정 하에, 지자체간에 협조를 통해 비용을 절감하여 서로 혜택을 볼 수 있도록 상 하류 지자체와 중앙정부 등 관련 당사자들 간의 비용배분 방안을 도출하는 것을 목적으로 하였다. 이를 위해서 광주광역시에 위치한 평동산업단지와 영본B, 영본C를 대상으로 광주, 전남, 중앙정부를 이해당사자로 하여 협조적 상황 하에서 대상 비용배분 문제를 정의하였고, 협조적 게임이론에 근거한 SCRB법 및 샤플리법을 적용하여 비용배분 결과를 제시하였다. 우선 광주와 전남이 각각 삭감해야 할 오염량을 산정하고, 해당 삭감량 만큼 처리하기 위한 하수처리시설의 규모를 설정하였다. 또한 하수처리시설의 건설비와 하수관거 공사비, 유지관리비를 산정하였으며, 하수처리시설의 내용연수인 20년간의 총비용을 2010년 현재가치 기준으로 산정하였다. 상 하류 지자체가 공동으로 대처할 경우 20년간 총비용은 416,311.8 백만원, 개별로 대처할 경우 464,439.6 백만원이며, 공동 대처가 42,359.3 백만원이 절감되므로 양 지자체 모두 협조적 게임에 응할 기본배경은 성립되었다. SCRB법에 의한 지자체별 비용배분율을 산정 결과, 광주 74.24%, 전남 25.76%로 산정되었으며, 2001~2010년 하수도 세입현황을 기준으로 중앙정부의 지원 비율은 10년간 최소 23.98%, 평균 29.22%, 최대 34.17%로, 각각의 비율별로 중앙정부, 광주, 전남의 비용분담액을 도출하였다. 본 논문에서는 개략적으로 비용을 산정하였으나 오염총량관리 사업은 막대한 예산을 필요로 하기 때문에 실제로 두 지자체가 협조하여 비용배분을 하게 된다면 하수처리시설의 수질개선효과, 하수처리시설 위치선정, 사업비용 등을 세밀하게 분석해야 할 것이다. 본 논문은 오염총량관리제에서 제시하는 목표수질을 대상으로 하였으나, 지자체의 정책에 따라 친수활동 증대와 생태 자연환경 개선 등과 같은 수질개선에 따른 간접적인 효과를 고려하여 오염 총량관리제의 목표수질보다 더 나은 수질을 원할 수도 있을 것이다. 협조적 게임의 상황을 복잡하게 하여 해결 가능성이 낮아질 수 있으나, 수질개선에 의한 다양한 효과를 편익으로 산정할 수 있다면 이를 협조적 게임에 적용하여 전반적인 수질개선에 대한 지자체의 적극적 활동을 유도할 수도 있을 것이다.

  • PDF

A Study of Sewer Layout to Control a Outflow in Sewer Pipes (우수관거 흐름 제어를 위한 관망 설계에 관한 연구)

  • Kim, Joong-Hoon;Joo, Jin-Gul;Jun, Hwan-Don;Lee, Jung-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Most developed models are designed to determine pipe diameter, slope and overall layout in order to minimize the cost for the design rainfall for the optimal sewer layout. However, these models are not capable of considering the superposition effect of runoff hydrographs in the sewer pipes. The flow characteristics in the sewer pipes, such as the sewer layout, pipe diameter and slope, vary according to the design of the sewer system. In particular, when the sewer network is modified, the shapes of the runoff hydrographs in the sewer pipes also change because of the superposition effect. In this study, the sewer layout is designed to control and distribute the flows in the sewer pipes, while considering the runoff superposition effect, in order to reduce the inundation risk at each junction. This is accomplished by separating the inflows that enter into each junction by changing the way in which pipes are connected between junctions. And this model combines SWMM (Storm Water Management Model) to perform the hydraulic analysis for the flows in the sewer network. The current sewer layout was modified to minimize the peak outflow at outlet in Garak basin, Seoul, South Korea. As the results, the peak outflows at the outlet were decreased by approximately 20% for the design rainfall during 30 minutes and the total overflows were also decreased for the excessive rainfalls.

A Study on Selection of Standard Scenarios in Korea for Climate Change (기후변화 표준 시나리오 선정에 관한 연구)

  • Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Climate Change Research
    • /
    • v.1 no.1
    • /
    • pp.59-73
    • /
    • 2010
  • One of the most important issues for projecting future water resources and establishing climate change adaptation strategies is 'uncertainty'. In Korea, climate change research results were very heterogeneous even in a same basin, but there have been few climate change studies dealt with the uncertainty reduction. This is because emission scenarios, GCMs, downscaling, and rainfall-runoff models that were used in the previous studies were almost all different. In this research, fifty one GCM scenarios based A and B emission scenarios were downloaded and then compared with the observed values for a period from January 2001 to December 2008. The downloaded GCM scenarios in general simulated well the observed but did not simulated well the observed precipitation especially for the flood season in Korea. The accuracy of each GCM scenario was measured with the model efficiency, PDF-based, and Relative Entropy methodology. Among the selected GCM scenarios with three methodologies, the four common GCM scenarios(CGCM2.3.2(MRI-M, B1), MIROC3.2medress(NIES, B1), CGCM2.3.2(MRI-M, A2), CGCM2.3.2(MRI-M, A1B) were finally selected. Results of the four selected GCMs were heterogeneity and projected increases of precipitation for the Korean Peninsula by from 27.36% to 12.49%, respectively. It seems very risky to rely a water planning or a management policy on use of a single climate change scenario and from this research results. Therefore, the four selected GCM scenarios proposed quantitatively were considered firstly for the water supply in the dry season and the drought management strategy in the Korean Peninsula for the future.

Analysis of Load Duration Curve Using Long Time Flow Measurement Data of Kyeongancheon (장기간 유량측정 자료를 이용한 경안천의 부하지속곡선 특성)

  • Noh, Changwan;Kwon, Phil-Sang;Jung, Woo-Seok;Lee, Myung-Gu;Cho, Yong-Chul;Yu, Soonju
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.1
    • /
    • pp.35-48
    • /
    • 2019
  • Long term flow measurement and water quality analysis data need to determine the target and allowable load for each basin in Total Water Pollution Load Management System (TWPLMS). The Load Duration Curve (LDC) is analyzed the relationship between flow data and water quality, and evaluates the pollutant load characterization by flow conditions. LDC of Kyeongancheon is created by the Flow Duration Curve (FDC) that was analyzed 8-day interval measured flow data from 2006 to 2015 and numeric water quality target in Kyeongancheon. As a result of this study, it is necessary to manage the point source pollutant because the numeric water quality target is not satisfied in the low flows. Also the numeric water quality target has been exceed for four months from March to June of the year and continuous and systematic watershed management is required to satisfy the numeric water quality target.

Unrecorded Alien Plant in South Korea: Ludwigia peploides subsp. montevidensis (Spreng.) P.H. Raven (미기록 침입외래종: 꽃여뀌바늘)

  • Kim, Hye-Won;Son, Dong Chan;Park, Soo Hyun;Jang, Chang-Seok;Sun, Eun-Mi;Jo, Hyeryun;Yun, Seok Min;Chang, Kae Sun
    • Korean Journal of Plant Resources
    • /
    • v.32 no.2
    • /
    • pp.201-206
    • /
    • 2019
  • Alien invasive species are introduced with or without intent and spreading all over Korea. They are known to have negative effects on biodiversity such as economic and environmental damage and causing decrease or loss of native species. The habitats like wetland, reservoir and riverside are especially in danger of being invaded by alien species due to stress and disturbance. Therefore, Korea National Arboretum is steadily working on research and studies on managing alien invasive species. This research aims to collect basic information of Ludwigia peploides subsp. montevidensis (Spreng.) P.H. Raven which was found near riverside in Suwon-si and is concerned to become an invasive alien species. We expect the description, diagram and pictures of this taxon will be helpful for early detection and effective management.

Evaluation of InVEST habitat quality model using aquatic ecosystem health data (수생태계 건강성 자료를 이용한 InVEST habitat quality 모델 적용성 평가)

  • Lee, Jiwan;Woo, Soyoung;Kim, Yongwon;Park, Jongyoon;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.657-666
    • /
    • 2021
  • Ecosystem biodiversity is rapidly being lost due to changes in habitat, fragmentation of habitat, climate change, and land use changes by human activities. Recently, attempts have been made to approach the watershed management level to secure the health of the watershed, but studies on how to approach biodiversity and habitat management are still in lack. The purpose of this study is to evaluate the habitat quality of Geum river basin using Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) habitat quality model. The results of habitat quality was verified to eco-natural map and ecological watershed health evaluation results. The habitat quality of watershed was evaluated from 0 to 0.86 and the results showed that habitat quality was higher in upstream than downstream. Compared the habitat quality value in each eco-natural grade, the average habitat quality of 1st, 2nd and 3rd grades were 0.80, 0.76 and 0.71 respectively. The results of the correlation analysis with ecological watershed health data, the coefficient of determination (R2) was 0.58, and the person coefficient was 0.76. The results of this study may be used as foundation data to support habitat protection and implementation of long-term biodiversity-related policies.

A study on estimation of agricultural water usage in river consider hydrological condition (수문상황을 고려한 하천에서의 농업용수 사용량추정 연구)

  • Kwak, Jaewon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.311-320
    • /
    • 2021
  • The agricultural water, which occupy about 61% of total water usage in the South Korea, is significantly objective to archieve effecitive water resources management. The objective of the study is to suggest a simple method in actual practice that could be used to estimate agricultural water usage in river considering hydrological condition. Historical record of agricultural water usage and runoff, which take account for hydrological condition of the basin, were obtained for totally 27 river basins. As the result, the high threshold value of the agricultural water usage rates compared to maximum usage amount has a particular correlations to the percent of normal year runoff for last 2 month, and threshold line of agricultural water usage rates was derived using the quantile regressions. Finally, two dimensionless threshold line and empirical formulas that described the correlation between the percent of normal year runoff for last 2 month and the agricultural water usage rate compared to maximum usage amount were derived. Also, the simple criteria to select which line and formula based on the characteristics of the basins was suggested but it need further studies. The result of the study could be used as an elemantary data in actual practice for water resoureces management.

A Study on the Ecological Characteristics and Management of Vegetation in Gudam Wetland (구담습지 식생의 생태적 특성 및 관리에 관한 연구)

  • Lee, Il Won;Kim, Kee Dae
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.133-143
    • /
    • 2021
  • This study aims to classify the plant communities of the Gudam wetland, a riparian wetland in Nakdong River basin, and to identify the characteristics of the communities according to the veritical structure to prepare management plan. In the Gudam wetland, a total of 19 plant communities were found through physiognomical vegetation, and were analyzed by dividing into tree dominant community, shrub dominant community, and herbaceous dominant community according to the vertical structure. When examining the results of the community characteristics analysis, the species diversity index was the highest in the tree dominant communities but there was concern about a decrease in species diversity due to the influx of exotic plants such as Sicyos angulatus. The shrub dominant community tended to have a biased species diversity index on shrub plants. The herbaceous dominant communities ware divided into wetland herbaceous communities and dryland herbaceous communities according to the species diversity index, and measures were needed to reduce the species diversity index due to artificial disturbances. The importance value was the highest in the arboreal Salix genus in the tree dominant communities, and the exotic plants such as Amorpha fruticosa were the highest in the shrub dominant communities. In the herbaceous dominant communities, wetland herbaceous plants such as Phragmites japonicus were high. As a result of the analysis according to ordination the tree dominant communities and shrub dominant communities were differentiated by exotic plant factors, and the herbaceous dominant communities were differentiated by hierarchy number and slope.

Disruption of Chemical Communication of Synanthedon tenuis (Lepidoptera: Sesiidae) by Sex Pheromone Dispensers in Sweet Persimmon Orchards (단감원에서 성페로몬 방출기에 의한 애기유리나방의 화학통신 교란 효과)

  • Chiluwal, Kashinath;Kim, Junheon;Park, Chung Gyoo;Roh, Gwang Hyun
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.333-339
    • /
    • 2020
  • Pheromone-based techniques are becoming a viable strategy of insect pest management as facilitated by the exponential increase in numbers of pheromone identifications from many insect pests. This is the report on the efficacy of pheromone-mediated chemical communication disruption (PCD) technique against the Korean population of smaller clearwing moths, Synanthedon tenuis (Butler) (Lepidoptera: Sesiidae) using its female sex pheromone component, (Z, Z)-3, 13-octadecadien-1-ol. The PCD trials were carried out four times during 2016 and 2017 in persimmon orchards located at Suncheon and Jinju Cities in Korea, and the PCD efficacy was expressed as the mean differences in the seasonal catches of S. tenuis males in the PCD and control plots. The seasonal male moth catches in monitoring traps installed in the PCD plots were significantly lower as compared with those installed in the control plots. Consequently, the PCD efficacy in the experimental orchards ranged from 95.2-100% with an average efficacy of 98.8 ± 1.2%, revealing a future possibility of pheromone-based management of S. tenuis.

Application of LID to Reduce Storm Runoff according to the RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 우수 유출량 저감을 위한 저영향개발 시설의 적용 방안)

  • Kim, Min ji;Kim, Ji Eun;Park, Kyung Woon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.333-342
    • /
    • 2022
  • Due to climate change, increased heavy rainfalls result in flood damage every year. To investigate the storm-runoff reduction effects of Low Impact Development (LID), this study performed runoff analyses using the U.S. Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) for past and future representative storm events of the Yongdu Rainwater Pumping Station basin. As a result, the infiltration loss for representative future rainfalls increased by 3.17 %, and the surface runoff and peak runoff rate increased significantly by 32.50 %, and 128.77 %, respectively. To reduce the increased surface runoff and peak runoff rates, this study investigated the applicability of LID approaches, including a permeable pavement, green roof, and rain garden, by adjusting the LID parameters and the ratio of installation area. We identified the ranges of LID parameters that decreased peak runoff rate and surface runoff, and increased infiltration. In addition, when the application ratio of permeable pavement, green roof, and rain garden was 2:1:3, best performance was attained, leading to a reduction of peak runoff of 26.85 %, infiltration loss 12.01 %, surface runoff 15.11 %, and storage 509.47 %. Based on analyzing the effect of storm runoff reductions for various return periods, it was found that as the return period increased, the proportion of peak runoff and surface runoff increased and the proportion of infiltration loss and storage decreased.