• Title/Summary/Keyword: BASIN MANAGEMENT

Search Result 813, Processing Time 0.026 seconds

A Development of Washoff Model for Suspended Solids in Urban Areas (도시유역의 부유고형물 유출평가를 위한 쓸림모형 개발)

  • Joo, Jingul;Jung, Donghwi;Kim, Joonghoon;Park, Moojong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.789-795
    • /
    • 2010
  • Suspended Solid (SS) is one of the main pollutants and discharges with attached other pollutants such as heavy metal and toxic substance. It is very important to estimate and forecast the release characteristics of SS for water quality improvement. The current studies assumed that SS release rate is proportional to the rain intensity and suggested exponential washoff models. These models related to the shear force of flow. In this study, a new washoff model is suggested based on relation with SS release rate and mean flow rate of the basin surface which is closely related to the shear force. The proposed model is applied to the Goonja drainage district in Seoul, Korea. The new washoff model simulates the SS discharge more accurately in the various rainfall types. The model can be widely applied to the real problems such as the management of non-point source pollutant and the design of treatment facilities.

ESTIMATION OF LONG-TERM POLLUTANT REMOVAL EFFICIENCIES OF WET RETENTION/DETENTION BASINS USING THE WEANES MODEL

  • Youn, Chi-Hyueon;Pandit, Ashok;Cho, Han-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.215-219
    • /
    • 2005
  • A macro spreadsheet model, WEANES (Wet Pond Annual Efficiency Simulation Model), has been developed to predict the long-term or annual removal efficiencies of wet retention/detention basins. The model uses historical, site-specific, multi-year, rainfall data, usually available from a nearby National Oceanic and Atmospheric Administration (NOAA) climatological station to estimate basin efficiencies which are calculated based on annual mass loads. Other required input parameters are: 1) watershed parameters; drainage area, pervious curve number, directly connected impervious area, and ti me of concentration, 2) pond parameters; control and overflow elevations, pond side slopes, surface areas at control elevation and pond bottom; 3) outlet structure parameters; 4) pollutant event mean concentrations; and 5) pond loss rate which is defined as the net loss due to evaporation, infiltration and water reuse. The model offers default options for parameters such as pollutant event mean concentrations and pond loss rate. The model can serve as a design, planning, and permitting tool for consulting engineers, planners and government regulators.

  • PDF

Estimation of the Parameters for the Clark Model through the Rainfall-Runoff Events (강우 유출사상을 통한 Clark 모형의 매개변수 평가)

  • Ahn, Tae-Jin;Baek, Chun-Woo;Kim, Min-Hyuk;Choi, Kwang-Hoon;Kang, In-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.770-774
    • /
    • 2006
  • The determination of feasible design flood is the most important to control flood damage in river management. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by engineer's empirical sense. Storage coefficient in the Clark unit hydrograph method mainly affects magnitude of peak flood. This study is to estimate the storage coefficients based on the observed rainfall-runoff events at the four stage stations in the Hantan river basin. Model calibration is the process of adjusting model parameter values until model results match historical data. An objective function which is the percent difference between the observed and computed peak flows is available for measuring the goodness-of-fit between computed and observed hydrographs. By sensitivity analysis for the storage coefficient, it has been shown that the storage coefficients affect the peak flows. The Clark parameters adopted in the River Rectification Basic Plan have been estimated through an iterative process designed to produce a hydrograph with the peak flow.

  • PDF

The Research of Pseudolite technology by comparison with each applications for marine applications (해양분야 응용을 위한 의사위성 실내항법기술의 적용 대상별 비교 연구)

  • Shim, Woo-Seong;Suh, Sang-Hyun;Lee, Sang-Jeong;Park, Chan-Sik;Ki, Chang-Don
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.6-11
    • /
    • 2002
  • A term of GNSS(Global Navigation Satellite System) is widely used to represent a navigation method for global area using satellite in space orbit 1his system can provide accurate and continuous position, and timing sources synchronized to UTC. There are, however, certain disadvantage that system can not operate without line of sight environment to satellite, or system failure of either satellite or control station. It is the pseduolite technology for using indoor and also for back-up equipment of foreign system failure. Especially, ocean applications widely use the GNSS system for navigation, surveying, timing, and management of traffic, so, system failure of GNSS will be very critical problem to affect many aspects of ocean field. In this paper, we experimented the pseudolite technology for several application field to compare the result in different environment. We used the common CDGPS algorithm for in-door navigation and experimented in ocean engineering basin with metallic wall and gymnasiums with concrete wall. We also investigated the comparison result and considerations for ocean applications of pseudolite technology.

  • PDF

HAZARD ASSESSMENT OF CURRENT STATE OF VEGETATION DEGRADATION USING GIS, A CASE STUDY: SADRA REGION, IRAN

  • Masoudi, Masoud;Amiri, E.
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • The entire land of Southern Iran faces problems arising out of various types of land degradation of which vegetation degradation forms one of the major types. The present work introduces a model developed for assessing the current status of hazard of vegetation degradation using Geographic Information System (GIS). This kind of assessment differs from those assessments based on vulnerability or potential hazard assessments. The Sadra watershed which covers the upper reaches of Marharlu basin, Fars Province, has been chosen for a hazard assessment of this type of degradation. The different kinds of data for indicators of current status of vegetation degradation were gathered from collecting of field data and also records of the governmental offices of Iran. Taking into consideration three indicators of current status of vegetation degradation the model identifies areas with different hazard classes. By fixing the thresholds of severity classes of the three indicators including per cent of vegetation cover, biomass production and ratio of actual biomass to potential biomass production, a hazard map for each indicator was first prepared in GIS. The final hazard map of current status of vegetation degradation was prepared by intersecting three hazards in the GIS. Results show areas under severe hazard class have been found to be widespread (89 %) while areas under moderate and very severe hazard classes have been found less extensive in the Sadra watershed. The preparation of hazard maps based on the GIS analysis of these indicators will be helpful for prioritizing the areas to initiate remedial measures.

A Study on the Determination of Starting Head by Comparing The Generating Power in Single Action Tidal Power Plant (발전량 비교를 통한 창조식 조력발전의 기동낙차 결정에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.680-687
    • /
    • 2018
  • Because of its predictability of the energy cycle and huge scale power output, the ocean energy from tidal power utilization has always received attention as a great energy source, even though its development cost, including the embankment construction, is so much higher than that of any other energy source. Nevertheless, nowadays many projects are being planned on account of institutional support from the government and the recent advance of construction technology. In Korea, the new industry field operating and managing the tidal power plant has already opened. But we are facing a number of problems for optimal operation of tidal power plant that are a lack of operation experience and a skill of professional management and others. This paper suggests a novel way to determine the starting head of power generation by generating power comparison method For this new method, the paper discusses many factors including changing the volume of the basin, the number of operating turbines and gates and forecasting the tidal amplitude and the characteristic curve of turbine and gate. Finally we verified that it can increase about 2% an annual power generation compared with the conventional method using the original operational function made in the plant design process.

A Study on the Stream and Reservoir Segmentation in Paldang Dam Basin in Kompsat-3A Image (Kompsat-3A 영상에서 팔당댐 유역의 하천과 저류지의 분할에 관한 연구)

  • You, Ho-Jin;Choi, Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.173-180
    • /
    • 2020
  • In Korea, due to the rapid increase in population due to industrialization, rivers were developed and managed with a focus on the completion and dimension of rivers. Due to the rapid increase in river use, there are so many river facilities indiscriminately that the administrative and management tasks are complicated and diversified in computerizing facilities and hydrologic data. Many methods have been proposed to solve this problem, but many problems exist. Among them, water has the same spectral characteristics, so it is difficult to subdivide into rivers, reservoirs, and dams. Therefore, this study subdivided the water system using supervised classification and GIS in order to efficiently manage the water resources by classifying the water system with the same spectral characteristics. In order to analyze the accuracy of the results, the accuracy of the objects classified using land cover map provided by environmental spatial information service was evaluated, and the result was an average of 91.75%, with 97.50% of rivers, 87.76% of reservoirs, and 90.00% of others.

A Study of Spatial Interpolation Impact on Large Watershed Rainfall Considering Elevation (고도를 고려한 공간보간기법이 대유역 강우량 산정시 미치는 영향 연구)

  • Jung, Hyuk;Shin, Hyung-Jin;Park, Jong-Yoon;Jung, In-Kyun;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.23-29
    • /
    • 2011
  • This study was conducted to identify the effect of lapse rate application according to elevation on the estimation of large scale watershed rainfall. For the Han river basin (26,018 $km^2$), the 11 years (2000-2010) daily rainfall data from 108 AWS (Automatic Weather Station) were collected. Especially, the 11 heavy rain and typhoon events from 2004 to 2009 were selected for trend analysis. The elevation effect by IDW (Inverse Distance Weights) interpolation showed the change up to +62.7 % for 1,200~1,600m elevation band. The effect based on 19 subbasins of WAMIS (Water Resources Management Information System) water resources unit map, the changes of IDW and Thiessen were -8.0 % (Downstream of Han river)~ +19.7 % (Upstream of Namhan river) and -5.7 %~+15.9 % respectively. It showed the increase trend as the elevation increases. For the 11 years rainfall data analysis, the lapse rate effect of IDW and Thiessen showed increase of 9.7 %~15.5 % and 6.6 %~9.6 % respectively.

Monitoring of Hydrological and Water Quality in Dongjin-River Hengjeong Bridge Watershed for Agricultural Watershed Non-Point Pollutant Sources Management (농업유역 비점오염 관리를 위한 동진강 행정교 유역의 수문·수질 모니터링)

  • Son, Jae-Gwon;Son, Tae-Ho;Choi, Jin-Kyu;Jo, Jae-Young;Goh, Nam-Young;Oh, Jin-Hyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.55-63
    • /
    • 2012
  • This study was performed to investigate the stream water quality characteristics in Hengjeong Bridge Basin of Dongjin River during twelve months from October, 2010 to September, 2011. Also, pollutant loads were calculated on the basis of the water quality and runoff results. The results showed that ranges of water temperature, pH and EC were $6.2{\sim}23.90^{\circ}C$, 6.32~7.78, $84.4{\sim}126.5{\mu}S/cm$ respectively. The Concentration of DO, BOD, COD, SS, Tot-N and Tot-P were observed as 6.80~9.20 mg/L, 0.40~1.60 mg/L, 1.96~4.41 mg/L, 59.60~142.20 mg/L, 1.28~3.52 mg/L, 0.001~0.07 mg/L respectively. Tot-N showed correlativity with BOD, and Tot-P showed correlativity with SS. The runoff pollutant loading of Tot-N and Tot-P were 117.94 kg/ha and 2.06 kg/ha respectively, in Hengjeong bridge of Dongjin river watershed. In the case of the correlativity between runoff pollutant loads and concentrations, Tot-N and Tot-P show low significant relationships.

Design of Closed Seawater Recirculating Aquaculture System for Korean Rockfish Sebastes schlegeli Culture

  • Peng, Lei;Oh, Sung-Yong;Jo, Jae-Yoon
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.102-111
    • /
    • 2004
  • Recirculating aquaculture system (RAS) consists of different treatment compartments that maintain water quality within the ranges commonly recommended for fish cultures. However, common RASs still exert considerable environmental impact since concentrations of organic matter and nutrients in their effluents are high. Compared with the traditional RAS, the model RAS developed here use a sedimentation basin for digestion purposes and then use the released volatile organic matter to stimulate a denitrification process. Different treatment compartments for solids, total ammonia nitrogen, and nitrate removal have been reviewed. This paper provides the basic information on designing different treatment compartments as well as the engineering criteria in closed seawater RAS, consisting of circular tanks for fish cultures; dual drain systems, sedimentation basins and foam fractionators for removal of solids; nitrification biofilters for TAN removal; denitrification biofilters for nitrate removal; and aerators for aeration. The main purpose is to outline a common procedure in designing of closed RAS for marine fish culture with an emphasis on easy management and low expense, as well as reduction of the environmental impact.