• Title/Summary/Keyword: BASIN MANAGEMENT

Search Result 813, Processing Time 0.021 seconds

New Classification Criteria and Database Code of Water Environment for Nature-Friendly River Work and Integrated Management of Watershed (자연친화적 하천사업 및 통합적 유역 관리를 위한 새로운 수환경 분류법 및 자료관리 프로그램의 개발)

  • Noguchi, Masato;Kang, Sang Hyeok;Kim, Joon Hyun;Nishida, Wataru;Fujisaki, Nobuhito
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.103-112
    • /
    • 1998
  • Nature-friendly river project has became common practice in Japan. In order to make it available for the conservation and rehabilitation of desirable water environment, water criteria for water environmental assessment must be established. Especially, the criteria estimating the effects on ecosystem in and around river should be constructed. In this paper, classification method for water quality has been developed using biological indices and applied to observed data in Honmyo River, Nagasaki, Japan. Modified PI method (BI') has been suggested and those of three most abundant species resulted effective estimate for an overall water quality with comparatively simple procedure. Extensive database management code was prepared for the comprehensive ecological monitoring of river basin, which includes various biota. That system enables easy access of all the ecological data for a dissemination of a sound and sustainable water environment. The result of this study could improve knowledge base, serve making consensus for citizens, and help river management plans. In Japan, citizen's realization and action are the most critical factor for nature-friendly river restoration project.

  • PDF

An Assessment of Flooding Risk Using Flash Flood Index in North Korea - Focus on Imjin Basin - (돌발홍수 지수를 이용한 북한 홍수 위험도 평가 - 임진강 유역을 중심으로 -)

  • Kwak, Chang Jae;Choi, Woo Jung;Cho, Jae Woong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1037-1049
    • /
    • 2015
  • The most of natural disasters that occur in North Korea are flood, typhoon and damage from heavy rain. The damage caused by those disasters since the mid-1990s is aggravating North Korea's economic difficulties every year. By recognizing the seriousness of the damages from the floods, the North Korean government has carried out the river maintenance, farmland restoration, land readjustment and afforestation projects since the last-1990s, but it has failed preventing the damages. In order to estimate the degree of flood risk regarding damage from chronic floods that occur inveterately in North Korea, this research conducted an additional simulation for rainfall-runoff analysis to reflect the characteristics of the ungauged area that make foreign countries hard to obtain the hydrological data and do not open the topographical data to public. In addition, this research estimates the degree of flood risk by selecting the factors of the hazard, exposure and vulnerability by following the standards of the Intergovernmental Panel on Climate Change (IPCC).

Analysis of Water Quality Fluctuations in Upstream Namhan River Watershed Using Long-term Statistical Analysis (통계적 경향 분석을 통한 남한강 상류 수계 수질 변동 해석)

  • Byeon, Sang-Don;Noh, Yeon-Jung;Lim, Kyeong-Jae;Kim, Jong-Gun;Kim, Dong-Jin;Hong, Eun-Mi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.15-26
    • /
    • 2020
  • There are fifteen non-point pollution management areas in Korea and three of them (Doam lake, Daegi district and Golji-cheon) are located in the upstream of the Namhan river watershed. Many efforts to reduce non-point sources (NPS) pollution have been conducted, however, water quality pollution in the watershed is still serious. To solve these problems, it is a priority to grasp water quality using statistical techniques. In this study, a trend analysis was conducted to evaluate the effect of NPS management in the watershed. The long-term trends from 1996 to 2018 of water quality properties were analyzed using data collected from the water environment information system. Seventeen monitoring stations were selected along the main stream in Namhan river basin. Monthly water quality properties (BOD, COD, TN, TP, TN/TP ratio, Conductivity, SS and Chlorophyll-a) were collected and analyzed by Mann-Kendall test and LOWESS. The results showed that the Conductivity tended to increase in all regions and was the highest level in Jijangcheon. Organic pollution such as BOD and COD tended to increase in the Jungseon area. SS did not show a large tendency, but it showed high concentration in the Doam watershed. In all regions, 40% of water quality properties showed a tendency to 'UP', 15% of water quality properties tended to 'DOWN', and 46% indicated no tendency. In order to determine the cause of this, additional research and measures for improvement are necessary. This study will be used for the establishment of water quality policy in the future.

Field Applications on Groundwater Management Scheme of Subwatershed Unit in Hampyeong-Gun (단위유역 단위의 지하수 관리기법 현장적용성 검토 (함평군 중심으로))

  • Jung, Chan Duck;Song, In sung
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.545-559
    • /
    • 2013
  • Until now, research achievements of groundwater such as groundwater to depth distribution, usage, the available amount of development, water quality have been written in the watershed units($25{\sim}250km^2$). However, complex topography and geology, and the rivers of our country does not fit. And a clear management standards have not been able to present measures in groundwater quantity, water quality management such as rainfall, groundwater, utilization, water quality, pollution, etc. Therefore, in this study, the classification criterion of subwatershed unit($2.5{\sim}25km^2$), which is suitable for topography and geology of Korea, for rainfall-rating, groundwater level-rating, groundwater pollution-rating, groundwater quality-rating presented and proved its efficiency by applying in Hampyeong-Gun area.

Hydrological observation system deployment for water Water quantity, quality management (수자원 수량, 수질관리를 위한 수문관측시스템 구축방안)

  • Yu, Se-hwan;Jang, Dong-bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.882-885
    • /
    • 2014
  • The duration and frequency of flooding and not last long, by the time climate change drought. The increased accordingly by reducing stream flow and year variation. This trend is expected to continue, and change towards a comprehensive analysis of such quantity, quality and management of water resources are managed. Flood warning system is called to perform them electronically to the management of water resources such as these to be in the organic water-related basic data acquisition, storage, processing and utilization. Can be divided into hydrological observations and flood warning systems alert system broadcast system. Hydrological observation system is the measurement from the hydrological stations (water level, rainfall, water) that can be observed hydrological status of the dam basin hydrological observation data transmitted to the central office, located at the dam monitoring and control system through a variety of networks including satellite, and the collected defined as the system that sent the K-water head office in 1 minute increments hydrological observation data. Headquartered in support of this decision. Dimensions of the dam are provided in addition to inward. Channeled through various hydrologic analysis and leveraging the data transfer. This paper looks at ways to build out hydrological observation system.

  • PDF

Pollutants Classification based on Trend Analysis and Assessment of Water Pollutants Achievement in Subbasins of Han River Basin (한강수계 중권역별 오염물질 추세분석 및 달성도 평가를 통한 우선관리물질 선정)

  • Kim, Kyeung;Song, Jung-Hun;Lee, Do Gil;Hwang, Ha-sun;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.67-76
    • /
    • 2019
  • The objectives of this study were to analyze trends of water pollutants and to evaluate the achievement of water quality standards by subbasins in the Han River. The trends of 40 water pollutants at 232 water quality measurement points were analyzed. Chemical oxygen demand (COD), Total organic carbon (TOC), Total coliforms (TC), et cetera were found to be worsening trend. For evaluation of achievement, we evaluated water quality arithmetic mean with river environment standards and human health standards at representative points of the subbasin. Biochemical oxygen demand (BOD), TOC, Total phosphorus (T-P), Fecal coliforms (FC), TC exceeded water quality standards, and water quality of human health standards was all satisfied. So, we prioritized pollutants. If pollutants exceed water quality standards or were worse, they were classified first pollutants. Although BOD and T-P are first pollutants because of water quality standards excess, they are continuously improved. Also, it is better to maintain current status because water quality management system of BOD and T-P is well prepared. Meanwhile, TOC, TC, and FC exceed water quality standards. Furthermore, they were worse gradually, but there is a lack of management systems such as water quality standards of the effluence facilities. Therefore, it is necessary to supplement the system. The results of this study can be used as primary data for the establishment of water quality standards and selection of management pollutants.

A study on drinking water protect zone policy by social benefit analysis of upstream and downstream (상·하류 사회적 가치 추정을 통한 상수원보호구역 정책 고찰)

  • Ryu, Munhyun;Jeon, Dongjin;Kim, Sueyoung;Kwon, Kidong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.357-362
    • /
    • 2023
  • The conflict between upstream and downstream regions is a representative social conflict in Korea. It is important issues in the economic and environmental aspects related to interests of property rights and water quality conservation. however, it is insufficient for studies on the economic damage and benefits between upstream and downstream by policy. We studied validity for drinking water protect zone, one of the major water conflict in Korea, by comparison between social loss by property rights restriction in the upstream and social benefits in the downstream and we proposed integrated water management policy in basin level.

Assessing Stream Vegetation Dynamics and Revetment Impact Using Time-Series RGB UAV Images and ResNeXt101 CNNs

  • Seung-Hwan Go;Kyeong-Soo Jeong;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • Small streams, despite their rich ecosystems, face challenges in vegetation assessment due to the limitations of traditional, time-consuming methods. This study presents a groundbreaking approach, combining unmanned aerial vehicles(UAVs), convolutional neural networks(CNNs), and the vegetation differential vegetation index (VDVI), to revolutionize both assessment and management of stream vegetation. Focusing on Idong Stream in South Korea (2.7 km long, 2.34 km2 basin area)with eight diverse revetment methods, we leveraged high-resolution RGB images captured by UAVs across five dates (July-December). These images trained a ResNeXt101 CNN model, achieving an impressive 89% accuracy in classifying vegetation cover(soil,water, and vegetation). This enabled detailed spatial and temporal analysis of vegetation distribution. Further, VDVI calculations on classified vegetation areas allowed assessment of vegetation vitality. Our key findings showcase the power of this approach:(a) TheCNN model generated highly accurate cover maps, facilitating precise monitoring of vegetation changes overtime and space. (b) August displayed the highest average VDVI(0.24), indicating peak vegetation growth crucial for stabilizing streambanks and resisting flow. (c) Different revetment methods impacted vegetation vitality. Fieldstone sections exhibited initial high vitality followed by decline due to leaf browning. Block-type sections and the control group showed a gradual decline after peak growth. Interestingly, the "H environment block" exhibited minimal change, suggesting potential benefits for specific ecological functions.(d) Despite initial differences, all sections converged in vegetation distribution trends after 15 years due to the influence of surrounding vegetation. This study demonstrates the immense potential of UAV-based remote sensing and CNNs for revolutionizing small-stream vegetation assessment and management. By providing high-resolution, temporally detailed data, this approach offers distinct advantages over traditional methods, ultimately benefiting both the environment and surrounding communities through informed decision-making for improved stream health and ecological conservation.

Evaluation of the future monthly groundwater level vulnerable period using LSTM model based observation data in Mihostream watershed (LSTM을 활용한 관측자료 기반 미호천 유역 미래 월 단위 지하수위 관리 취약 시기 평가)

  • Lee, Jae-Beom;Agossou, Amos;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.481-494
    • /
    • 2022
  • This study proposed a evaluation of the monthly vulnerable period for groundwater level management in the Miho stream watershed and a technique for evaluating the vulnerable period for future groundwater level management using LSTM. Observation data from groundwater level and precipitation observation stations in the Miho stream watershed were collected, LSTM was constructed, predicted values for precipitation and groundwater levels from 2020 to 2022 were calculated, and future groundwater management was evaluated when vulnerable. In order to evaluate the vulnerable period of groundwater level management, the correlation between groundwater level and precipitation was considered, and weights were calculated to consider changes caused by climate change. As a result of the evaluation, the Miho stream watershed showed high vulnerability to underground water management in February, March, and June, and especially near the Cheonan Susin observation well, the vulnerability index for groundwater level management is expected to deteriorate in the future. The results of this study are expected to contribute to the evaluation of the vulnerable period of groundwater level management and the derivation of preemptive countermeasures to the problem of groundwater resources in the basin by presenting future prediction techniques using LSTM.

Application of HSPF Model for Effect Analyses of Watershed Management Plans on Receiving Water Qualities (유역관리에 따른 수질개선 효과분석을 위한 HSPF 모델 적용)

  • Song, Hye-Won;Lee, Hye-Won;Choi, Jung-Hyun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.358-363
    • /
    • 2009
  • The HSPF (Hydrological Simulation Program-Fortran) model was applied to the Kyoungan stream watershed to analyze effects of watershed management plans on receiving water qualities. Utilizing BASINS 3.1 GIS program, the Kyoungan stream watershed was divided into 57 sub-basins and model input parameters were obtained, from DEM (Digital Elevation Model), land use type, stream map, and wastewater treatment facilities, etc.. The hydrologic module of the model was validated based on the measured meteorological data and stream flow data. Then the model was calibrated and verified against the field measurements of water qualities, including temperature, DO, BOD, $NO_3-N$, $NH_3-N$, Org-N, TN and TP. In most cases, there were reasonable agreements between measurements and predictions. The validated model was used to analyze the water quality improvements in the main stream of Kyoungan stream according to the watershed management plans in sub-basins, which are three different scenarios: water quality improvement in tributaries through watershed management activities, expansion and up-grade of wastewater treatment plants, and application of first and second scenarios together. It was concluded that expansion and upgrade of wastewater treatment plants would be more effective than watershed management activities. In order to improve water qualities to the satisfactory level, both watershed management and point source control must be required in the Kyoungan stream.