• 제목/요약/키워드: BASIN MANAGEMENT

검색결과 813건 처리시간 0.029초

Soil Erosion Assessment Using RS/GIS for Watershed Management in Dukchun River Basin, a Tributary of Namgang and Jinyang Lake

  • Cho Byung Jin;Yu Chan
    • 한국농공학회논문집
    • /
    • 제46권7호
    • /
    • pp.3-12
    • /
    • 2004
  • The need to predict the rate of soil erosion, both under existing conditions and those expected to occur following soil conservation practice, has been led to the development of various models. In this study Morgan model especially developed for field-sized areas on hill slopes was applied to assess the rate of soil erosion using RS/GIS environment in the Dukchun river basin, one of two tributaries flowing into Jinyang lake. In order to run the model, land cover mapping was made by the supervised classification method with Landsat TM satellite image data, the digital soil map was generated from scanning and screen digitizing from the hard copy of soil maps, digital elevation map (DEM) in order to generate the slope map was made by the digital map (DM) produced by National Geographic Information Institute (NGII). Almost all model parameters were generated to the multiple raster data layers, and the map calculation was made by the raster based GIS software, IL WIS which was developed by ITC, the Netherlands. Model results show that the annual soil loss rates are 5.2, 18.4, 30.3, 58.2 and 60.2 ton/ha/year in forest, paddy fields, built-up area, bare soil, and upland fields respectively. The estimated rates seemed to be high under the normal climatic conditions because of exaggerated land slopes due to DEM generation using 100 m contour interval. However, the results were worthwhile to estimate soil loss in hilly areas and the more precise result could be expected when the more accurate slope data is available.

GIS를 이용한 미호천의 장래수질예측 (Water Quality Prediction of the Miho Stream Using GIS)

  • 노준우;이상진;이상욱
    • 대한공간정보학회지
    • /
    • 제16권1호
    • /
    • pp.13-21
    • /
    • 2008
  • 본 논문에서는 금강수계의 미호천을 대상으로 GIS를 이용, 2010년을 대상으로 장래수질을 예측하였다. 오염총량관리 기본계획에서 제시된 자료를 기반으로 미호천으로 유입되는 지류별 수계에 대하여 재계산하여 각 수계별 오염부하량을 산정하였으며 이들 정보를 활용하여 지류별 농도를 계산한 다음 미호천의 수질모의를 실시하였다. 수질모의는 대표적인 하천수질 모형인 Qual2E 모형을 사용해서 BOD, TN, TP 등의 대표적인 수질인자에 대한 모의를 실시 하였다. 수계별 오염부하량을 산정한 결과 도시지역을 포함한 무심천 및 보청천의 부하량이 높게 나타남을 알 수 있었고 미호천 전체 수질은 청주 하수처리장의 영향을 직접적으로 받는 것으로 나타났다. 대상유역에서의 효율적 수질관리와 오염총량제에서 제시한 목표수질을 달성하기 위해서는 하수처리장의 고도처리화가 먼저 달성되어야 함을 알 수 있었고, 그 외에도 무심천으로 공급되는 농업용수의 유량을 증가시켜 이를 수질희석의 용도로 사용하는 방안에 대해서 모의를 실시함으로써 수질기준을 만족할 수 있는 적정유량을 산정하여 제시하였다.

  • PDF

중권역 대표지점의 목표수질 달성도 평가 - TOC를 중심으로 - (Evaluation of Attainment Ratio on Water Quality Goal of the Mid-watershed Representative Station)

  • 이재호;이승현;이수형;이재관
    • 한국물환경학회지
    • /
    • 제33권5호
    • /
    • pp.525-530
    • /
    • 2017
  • The attainment ratios of the water quality goals of the 114 mid-watershed representative stations, examined during the period2011 to 2015, were evaluated in the study. Of the four major river basins, the attainment ratio on water quality goal of the Geum River basin turned out to be the lowest. As a result of formal evaluation of the attainment ratios of BOD, COD and TOC, it was found that the attainment ratio of COD was much lower than that of BOD and TOC (I a circumstance thought to be caused by the higher COD/BOD and COD/TOC ratios of the water quality of the river than those of the environmental water quality standard). As well, higher COD/BOD and COD/TOC of wastewater discharged from point and non-point sources (other than those of the environmental water quality standards) might possibly represent one of the reasons. We also compared attainment ratio between the main stream and tributaries, which indicated that the higher attainment ratio was present in the main stream. The attainment ratio is also documented as more significant in the winter season than the summer season, possibly due to the contribution of non-point pollutants swept in by rain during the summer season during documented periods of high precipitation. Thus, water quality management in summer season and improvement of water quality of the tributaries might be important as a means of increasing attainment ratio on water quality goal.

신경망을 이용한 낙동강 유역 하도유출 예측 및 홍수예경보 이용 (Real-Time Forecasting of Flood Runoff Based on Neural Networks in Nakdong River Basin & Application to Flood Warning System)

  • 윤강훈;서봉철;신현석
    • 한국수자원학회논문집
    • /
    • 제37권2호
    • /
    • pp.145-154
    • /
    • 2004
  • 본 연구는 비선형성이 강한 강우-유출의 특성을 고려하여 홍수시 하도의 유출을 예측하고 하천유역의 홍수예경보에 이용하기 위하여 신경망 시스템의 모형화 가능성을 검증하였다. 신경망을 이용한 실시간 하도홍수 예측모형(Neural River Discharge-Stage Forecasting Mudel; NRDFM)은 낙동강 유역의 왜관 및 진동 지점의 홍수량 예측에 적용하였다. NRDFM에 의한 하도홍수량의 왜관 및 진동 지점 예측결과를 실측치와 비교$\cdot$검토한 결과 제시한 세 가지 모형 중 NRDFM-II의 예측성능이 가장 우수하였으며, NRDFM-I 및 NRDFM-II도 충분한 예측가능성을 보여주었다. 따라서, 본 연구에서 제시한 모형은 실시간 홍수예경보로의 적용이 가능하며, 이를 통하여 효율적으로 홍수를 통제 및 관리할 수 있을 것이다.

토사유실 원인지역 검토를 위한 SPOT 5 위성영상과 토지피복도의 활용 (Application of SPOT 5 Satellite Image and Landcover Map for the examination of Soil Erosion Source Area)

  • 이근상;박진혁;황의호;고덕구
    • 한국수자원학회논문집
    • /
    • 제38권11호
    • /
    • pp.927-935
    • /
    • 2005
  • 강우에 따른 토사유실은 호소내 저수용량 감소 및 탁수 등의 수질오염을 유발하기 때문에 유역관리 측면에서 중요한 인자가 된다. 최근 GIS를 활용한 토사유실평가 연구가 진행되고 있으나, 토사유실 원인지역에 대한 검토는 고려하지 않고 있다. 본 연구에서는 GIS 기반 토사유실모델을 활용하여 임하호 유역의 토사유실량을 산정하였으며, SPOT 5 고해상도 위성영상과 토지피복도 자료를 활용하여 토사유실원인지역을 검토하였다. 분석결과 토사유실이 높게 나타나는 지역의 대부분이 밭으로 확인되었으며 그 위치를 영상에서 효과적으로 확인할 수 있었다. 또한 위성영상에서 경계를 확인하기 곤란했던 밭과 과수원이 공통으로 나타나는 지역은 현장확인을 통해 그 적정성을 검토할 수 있었다.

Future drought assessment in the Nakdong basin in Korea under climate change impacts

  • 김광섭;노반콴
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.458-458
    • /
    • 2012
  • Climate extreme variability is a major cause of disaster such as flood and drought types occurred in Korea and its effects is also more severe damage in last decades which can be danger mature events in the future. The main aim of this study was to assess the effectives of climate change on drought for an agriculture as Nakdong basin in Korea using climate change data in the future from data of General Circulation Models (GCM) of ECHO-G, with the developing countries like Korea, the developed climate scenario of medium-high greenhouse gas emission was proposed of the SRES A2. The Standardized Precipitation Index (SPI) was applied for drought evaluation. The drought index (SPI) applied for sites in catchment and it is evaluated accordingly by current and future precipitation data, specific as determined for data from nine precipitation stations with data covering the period 1980-2009 for current and three periods 2010-2039, 2040-2069 and 2070-2099 for future; time scales of 3month were used for evaluating. The results determined drought duration, magnitude and spatial extent. The drought in catchment act intensively occurred in March, April, May and November and months of drought extreme often appeared annual in May and November; drought frequent is a non-uniform cyclic pattern in an irregular repetitive manner, but results showed drought intensity increasing in future periods. The results indicated also spatial point of view, the SPI analysis showed two of drought extents; local drought acting on one or more one of sites and entire drought as cover all of site in catchment. In addition, the meteorology drought simulation maps of spatial drought representation were carried out with GIS software to generate for some drought extreme years in study area. The method applied in this study are expected to be appropriately applicable to the evaluation of the effects of extreme hydrologic events, the results also provide useful for the drought warning and sustainable water resources management strategies and policy in agriculture basins.

  • PDF

Impacts of Managing Water in a Closed Basin: A Study of the Walker River Basin, Nevada, USA

  • Tracy, John C.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.1-10
    • /
    • 2012
  • Throughout much of the world, many ecological problems have arisen in watersheds where a significant portion of stream flows are diverted to support agriculture production. Within endorheic watersheds (watersheds whose terminus is a terminal lake) these problems are magnified due to the cumulative effect that reduced stream flows have on the condition of the lake at the stream's terminus. Within an endorheic watershed, any diversion of stream flows will cause an imbalance in the terminal lake's water balance, causing the lake to transition to a new equilibrium level that has a smaller volume and surface area. However, the total mass of Total Dissolved Solids within the lake will continue to grow; resulting in a significant increase in the lake's TDS concentration over time. The ecological consequences of increased TDS concentrations can be as limited as the intermittent disruption of productive fisheries, or as drastic as a complete collapse of a lake's ecosystem. A watershed where increasing TDS concentrations have reached critical levels is the Walker Lake watershed, located on the eastern slope of the central Sierra Nevada range in Nevada, USA. The watershed has an area of 10,400 sq. km, with average annual headwater flows and stream flow diversions of 376 million $m^3/yr$ and 370 million $m^3/yr$, respectively. These diversions have resulted in the volume of Walker Lake decreasing from 11.1 billion m3 in 1882 to less than 2.0 billion $m^3$ at the present time. The resulting rise in TDS concentration has been from 2,560 mg/l in 1882 to nearly 15,000 mg/l at the current time. Changes in water management practices over the last century, as well as climate change, have contributed to this problem in varying degrees. These changes include the construction of reservoirs in the 1920s, the pumpage of shallow groundwater for irrigation in the 1960s and the implementation of high efficiency agricultural practices in the 1980s. This paper will examine the impacts that each of these actions, along with changes in the region's climate, has had on stream flow in the Walker River, and ultimately the TDS concentration in Walker Lake.

  • PDF

원격탐사와 공간정보를 활용한 미계측 유역 홍수범람 해석에 관한 연구(II) - 침수 피해면적 산정을 중심으로 - (The Analysis of Flood in an Ungauged Watershed using Remotely Sensed and Geospatial Datasets (II) - Focus on Estimation of Flood Inundation -)

  • 손아롱;김종필
    • 대한원격탐사학회지
    • /
    • 제35권5_2호
    • /
    • pp.797-808
    • /
    • 2019
  • 본 연구는 유량 실측자료를 활용할 수 없는 미계측유역을 대상으로 홍수범람해석을 수행하기 위한 원격탐사자료의 활용성을 평가하고자 하였다. 대상유역으로는 최근 태풍 라이언록으로 인하여 홍수피해가 발생했던 북한 두만강유역을 선정하였다. 홍수해석에 필요한 지형학적 매개변수를 추정하기 위하여 ASTER GDEM을 활용하였다. 일반적으로 DEM은 하천구역(제외지)에서는 수표면 표고를 나타내므로 이를 이용해서 하천단면을 파악하는데 한계가 있다. 따라서 본 연구에서는 가상의 하천단면을 적용하여 2차원 홍수범람해석을 수행하였다. 또한 하천단면이 홍수범람면적 추정에 미치는 영향을 파악하기 위하여 하천단면을 보간하지 않은 경우에 대해서도 분석을 수행하였다. 분석결과, 침수면적과 침수심에 있어 오차가 발생하지만 주의 깊게 사용한다면 홍수위험지도 작성 및 대응 대비에 활용 가능할 것으로 판단된다.

Assessment of Pollution Levels in the Jangsungcheon Watershed Using Load Duration Curves and Analysis of the Causes

  • Cho, Sohyun;Bak, Jonghun;Lee, Yeong Jae;Kim, Kyunghyun;Jung, Kang Young
    • 한국환경과학회지
    • /
    • 제28권10호
    • /
    • pp.873-885
    • /
    • 2019
  • In this study, a load duration curve was applied to the Jangseongcheon, one of the tributaries of the Yeongsan River, to assess whether the target water quality was achieved. In addition, pollution of the water body was investigated to develop and suggest the optimal management time with respect to polluted flow sections and monthly conditions. The average flow rates of sections JS1 and JS2 were $0.25m^3/s$ and $1.08m^3/s$, respectively. The BOD and T-P for water-quality standards at JS1 were rated at II, whereas the COD and TOC were rated at III, thus indicating a fair level of water quality. By contrast, the BOD at JS2 was rated at III, the T-P at IV, and the TOC at V, indicating poor water quality in this section. The load duration curve was plotted using the actual flow data measured in eight-day intervals for eight years from 2011 to 2018 at locations JS1 and JS2 in the Jangsungcheon Basin. In an assessment using the load duration curve on whether the target water quality was met at location JS1, all of the water quality parameters (BOD, COD, TOC, T-N, T-P, and SS) satisfied the target water quality. By contrast, at location JS2, parameters COD, TOC, T-N, and T-P exceeded target values by more than 50%, indicating the target water quality was not met. The discharge loads of locations JS1 and JS2 were analyzed to identify the reasons the target water quality was exceeded. Results revealed that the land system contributed considerably. Furthermore, the discharge load of JS2 accounted for more than 80% of the load on the entire basin, excluding that of JS1. Therefore, the best method for restraining the inflow of pollutants into the stream near location JS2 must be applied to manage the water quality of the Jangsungcheon.

Impact of the Mekong River Flow Alteration on the Tonle Sap Lake in Cambodia

  • Lee, Giha;Kim, Joocheol;Jung, Kwansue;Lee, Hyunseok
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.231-231
    • /
    • 2015
  • Rapid development in the upper reaches of the Mekong River, in the form of construction of large hydropower dams and reservoirs, large irrigation schemes, and rapid urban development, is putting water resources under stress. Many scientific reports have pointed out that cascade dams along the Mekong River lead to serious problems: not only hydrologically but also a decline of agricultural productivity due to a decrease of sediment supply in the Mekong Delta and a change of fish amount due to drastic change of the water environment. Cambodia and Vietnam, located in the lowest Mekong basin, are gravely affected by radical changes of hydrologic regime due to Mekong River developments. In particular, the Tonle Sap Lake in Cambodia is very sensitive to the flood cycle and flow variation of the Mekong River as well as inflow water quality from the Mekong River. More than 50% of Cambodian GDP depends on the primary industries such as agriculture, fishing, and forestry, and the Tonle Sap Lake plays an important role to support the national economy in Cambodia. In addition, Cambodian people usually take nourishment from the fish of Tonle Sap Lake. This research aims to assess the impacts of the Mekong river flow alternation on the hydrologic regime of the Mekong River - Tonle Sap Lake. We carried out rainfall-runoff-inundation simulation using CAESER-LISFLOOD for integrated water resource management in the Tonle Sap Basin and then analyze flood inundation variation of the Tonle Sap Lake due to the scenarios. Furthermore, the simulated inundation maps were compared to MODIS satellite images for model verification and hydrologic prediction.

  • PDF