• Title/Summary/Keyword: BASIN MANAGEMENT

Search Result 818, Processing Time 0.021 seconds

Development of Wireless Real Time River Water Quality Management System with GPS and GIS (GIS와 GPS를 연계한 무선 실시간 하천수질관리시스템 개발)

  • Yi, Jae-Eung;Ha, Sang-Min;Lee, Jong-Kook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.69-75
    • /
    • 2002
  • In this paper the development of a real time river water quality management system is described. This system can manage a river water quality fluctuation by finding out abnormal conditions quickly and exactly. The GIS based monitoring system collects various properties of river water quality through the wireless real time network. Tanchun, the first branch of the Han River was selected as the target basin of the system development. This system is composed of three parts - wireless real time field measuring system with a GPS receiver, a server computer and a GIS platform. After the first field test in Tanchun basin, the result showed the many possibilities of measuring various water quality properties in real time and storing the data and analyzing them within the GIS environment in real time in very efficient manners. It is expected that the developed system will contribute to the efficient management of a river water quality control and water quality related disaster prevention purposes.

Development of the vulnerable period assessment method for the weekly groundwater resources management in Yeongsan river basin considering the critical infiltration concept and the correlation between hydrological data sets (한계침투량 개념과 수문자료 간 상관관계를 고려한 영산강 유역의 주 단위 지하수자원 관리 취약 시기 평가 방법 개발)

  • Lee, Jae-Beom;Kim, Il-Hwan;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.195-206
    • /
    • 2019
  • In this study, the vulnerable period assessment method for weekly groundwater resources management was developed considering correlation between data of groundwater level, river level, precipitation applying critical infiltration concept. The vulnerable periods of 3 case study were assessed using data of groundwater, precipitation, river level, and results were compared. The weights for between observation stations were calculated using correlation of groundwater, precipitation, river level data, and weights that could be considered recently trend of data for each observation station. The vulnerable period was assessed using final calculated weights and multi criteria decision method, compared result for each case study. The developed method can be a quantitative basis for the establishment of efficient groundwater resources management and the decision of specific countermeasure applyment.

Enhancement of Water Purification Functions of Watershed Basin (II) -­With a Special Reference to the Point at Issue and Counterplans­- (수변구역 산림의 수질정화기능 증진 (II) -­문제점과 대책을 중심으로­-)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.58-65
    • /
    • 2002
  • This study synthesizes previous research accomplishments with analysis of problems and counterplan for the riparian forest zone management and ongoing research strategy is suggested. If a part of budgets for water use allotments is supported for forest watershed owner, this policy for the forest owner could encourage the forest management of watershed. Integrated riparian forest management guideline in city and county needs to be established for the implementation of government guidelines. Base on the guideline, working plans of city and county could be evaluated. Public Forest Tending Work for stream water quality and quantity conservation should be enlarged for forest watershed and forest area management in five big river watersheds. Forest watershed should be managed with a connected system for a pollutant reduction strategy in urban and industrial areas.

A Subsurface Environmental Management System using Spatial Information System and Groundwater Model (공간정보시스템과 지하수모형을 결합한 지하환경관리시스템의 구축)

  • Kim, Joon Hyun;Han, Young Han
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.287-291
    • /
    • 1999
  • This study was performed to develop an information processing system for the sound conservation of soil and groundwater resources. The system contains the geographic spatial information system(GSIS), and the numerical model of groundwater flow and contamination. Numerical models (MODFLOW, MOC3D, MT3D, PMPATH, PEST, UCODE) and GSIS(ArcView) were integrated for the construction of an integrated management system of subsurface environment. The developed system was applied to the management of three mineral water companies located in clean mountain area. The impact of pumping over the overall catchment basin was modeled using the developed system for the decision of future management criteria.

  • PDF

Habitat Characteristics and Management of Abandoned Rice Paddy Field Wetlands in Mountain - In Case of the Uldae Wetland in Bukhansan National Park - (도시 내 묵논습지 생물서식 특성 및 관리방안 -북한산국립공원 울대습지를 대상으로-)

  • Yoo, So-Yeon;Hur, Myung-Jin;Han, Bong-Ho;Choi, Jin-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.4
    • /
    • pp.11-23
    • /
    • 2018
  • The purpose of this study is to identify the ecological characteristics and biological interactions between species of the abandoned rice paddy field in mountainous areas and to suggest a management strategy for stable food chain formation and biodiversity enhancement. The study site is located in Uldae wetland of Songchu district Bukhansan National Park, site characteristics and biological habitat characteristics were identified through site survey and literature survey. With regard to physical environment, among geographical features, the Uldae Wetland and the neighborhood inside the basin was a gently sloping area($5{\sim}15^{\circ}$). And 64.0% of basin faced the north. With regard to water environment, the Uldae Wetland was wetland of rainfed paddy field depending on precipitation and the system of stream flowing into the wetland from valley. According to the results of examining flora in plant ecology, in general, they were herbaceous wetland species. 88.6% of existing plants inside the Uldae Wetland basin was a forest in the mountain. And Quercus spp. community and Pinus densiflora community accounted for 64.6% of that, and was dominant. Except for that, Salix koreensis community was distributed. The existing vegetation of Uldae Wetland inhabited wetland species and terrestrialization indicator species, and it was thought that partial terrestrialization inside the Uldae Wetland was in progress after the discontinuation of paddy cultivation, such as the expansion of Salix koreensis distribution area. In the status of appearing faunae in the Uldae Wetland with regard to wildbirds of appearing principal species, The Uldae wetland was based on a abandoned rice paddy field various wildlife, and was a wildlife feeding, spawning, and resting place. The water environment was an important factor in maintaining the wetland living creatures function, habitat of waterbirds and benthic macroinvertebrates, amphibians and odonate are spawning ground and habitat, it was affecting the vegetation ecosystem based on wetlands. In order to maintain the diversity of wildlife, it was important to maintain smooth water supply and water level. A stable food chain will be formed and the Uldae wetland biodiversity will be abundant by establishing the relationship between the species of Uldae wetland, which is abandoned rice paddy field, and the habitat environment favored by species belonging to the ecosystem stepwise linkage. The ecological characteristics of the Uldae wetlands and the relation between the species were analyzed and the environmental conditions were reflected in the planning and management plan of Uldae wetland ecology.

Optimum Capacity of Retention Basin for Treating Nonpoint Pollutants and Its Removal Efficiency in Industrial Complex Areas (산업단지내 비점오염물질 처리를 위한 적정 저류조 용량 산정 및 처리효율)

  • Kim, Lee-Hyung;Lee, Byung-sik;Kwon, Soo-Youl
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.75-85
    • /
    • 2005
  • The Construction of industrial complex areas means the increase of imperviousness rate and the increase of nonpoint pollutant emissions during a rainfall. Generally the retention basin can become the alternative for removing and controling these nonpoint pollutants. Recently Ministry of Environment are trying to change the purpose of retention basins from flooding control to nonpoint pollutant control. In order to propel the stormwater management program, administration plan of stormwater management is enacted in Spring, 2005. Hereafter, in a newly developing area, the best management practices should be established to control the nonpoint pollutant. Landuses of the research area are classified to the categories of the 1st manufacturing industry, metal industry, fiber and chemical product manufacturing industry, etc. Therefore, this research was performed to understand washed-off characteristics of stormwater and to suggest the controling method of nonpoint pollutants. The optimum capacity of the retention basin can be determined by analyzing the relationships among data of rainfall, runoff, washed-off pollutants from the areas. The rainfall analysis using the data of normal year, recent 2, 5 and 10 years shows that the 80% rainfall frequency was occurred on 10mm accumulated rainfall, but which is not considered the first flush effect. However, by considering the first flush effect, the appropriate treatment capacity of rainfall can be decreased to 4-5mm accumulated rainfall. Using the criteria, the optimum capacity of retention basin is determined to $12,000m^3$ in the research area. The washed-off nonpoint pollutant loading from the areas have beeb calculated to 435ton/yr for TSS, 238ton/yr for COD, 8,518kg/yr for TKN and 1,816kg/yr for TP. The mass of 78.3ton/yr for TSS, 20.4ton/yr for BOD, 128.6ton/yr for COD, 4.6ton/yr for TKN and 980kg/yr for TP can be reduced by constructing the retention basin. The sediment accumulation rate is also calculated by $6.53kg/m^2-hr$.

  • PDF

Evaluation of instream flow in Han river according to the Imnam dam operation in North Korea (북한 임남댐 운영에 따른 북한강 하천유지유량 평가)

  • Lee, Jae-Kyoung;Jang, Suk Hwan;Ihm, Nam-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.71-82
    • /
    • 2020
  • The objective of this study is to evaluate the instream flow in the North Han River basin according to the operation of Imnam Dam in North Korea. The water budget and instream flow satisfaction were analyzed using hourly, daily and monthly data of Water Management Information System (WAMIS) from Jan. 1991 to Dec. 2018. As a analysis result of water budget using hourly data in the North Han River basin, although inflows compared with dam release in the upstream basin of Peace Dam-Hwacheon Dam and Chuncheon Dam-Soyanggang Dam-Uiam Dam were calculated as negative values, the reasonable results using daily and monthly average data were estimated. It showed that the results of water budget analysis of dam inflow and total release may be different by time units of data. The monthly average inflow of Hwacheon Dam decreased significantly after the construction in 2003 of Imnam Dam, which confirmed that the operation of Imnam Dam had a significant effect on the dams in the North Han River basin. The operation of Imnam Dam is one of the main reasons for the lack of instream flow and total shortage amounts and shortage period increased up to +330% due to the decrease in inflow and total release of dams in the North Han River water after the operation of Imnam Dam. It is necessary to study various plans to secure instream flow including transboundary river management

Stream Health Assessment on Hoeya River Basin and Other Streams Based on Fish Community and Land Use in the Surrounding Watersheds (어류군집과 하천주변 토지이용에 따른 회야강 수계와 인근하천의 건강성 평가)

  • Kim, Jeong-Hui;Yoon, Ju-Duk;Jo, Hyunbin;Chang, Kwang-Hyeon;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.392-402
    • /
    • 2012
  • In this study, to analyze the stream health using fish assemblage and make effective management, we conducted fish monitoring in the Hoeya River basin and neighboring streams. A total of 33 species classified into 12 families were collected from 29 sites in 2007. Dominant species was Zacco platypus (Relative abundance, RA: 24.8%), and subdominant species was Rhynchocypris oxycephalus (RA: 16.2%). Eight Korean endemic species and 4 exotic species were identified. Moreover, two species (Opsariichthys uncirostris amurensis and Hemiculter eigenmanni) were translocated from other basin. To evaluate stream health of the study sites, Index of Biological Integrity (IBI) was applied, based on fish assemblages. Overall, IBI values were "C (Fair)" or "D (Poor)" condition, according to the grade except two sites which recorded "B (Good)". The correlation between land use pattern of surrounding watershed and IBI was analyzed to verify impact of development on stream health using fish assemblage. As a result, when percentage of the developmental groups increased, IBI values were decreased (Pearson correlation, r=-0.425, p=0.022). In contrast, increment of percent forest and grass land was positively correlated with IBI (r=0.556, p=0.002). The agricultural group and IBI did not significantly correlate with each other (r=-0.231, p=0.333). In this study, we identified a relationship between land use of surrounding watershed and stream health using fish data (i.e. IBI). These results could be provided useful fundamental information to establish management and restoration plan in the Hoeya River basin and other rivers distributed in Korea.

An Analysis of the Runoff Variation due to Urbanization in Cho-kyung Stream Watershed (조경천 유역의 도시화에 따른 유출 변화 추이 분석)

  • Choi, Jung-Hwa;Lee, Jeong-Ju;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.161-169
    • /
    • 2009
  • Rainfall-runoff procedures of urban area are more complicated than agricultural procedures. Extension and development of town leads to shift of the basin characteristics and it makes more difficult to use runoff models. In this study, the changes of hydrologic circumstances and the shape of hydrograph due to the urbanization in Cho-kyung river basin has been assessed which is the representative urban stream in Jeonju city. The urbanization can be classified as four typical year. The natural basin period(1924) that is before the urban development, the period of construction of Chonbuk National University campus (1963), the period of construction of residential area(1986), and urbanization process has been finally completed in 1995. The rainfall-runoff analysis has been carried out by Storm Water Management Model(SWMM) under condition of the basin characteristics and impervious area of each period. It was found that hydrologic characteristics such as river length, roughness coefficient, and coefficient of surface storage has been decreased. According to the land use change, the pervious area was decreased from 97.7% to 42%, while the impervious area was increased from 0.6% to 34%. The time of concentration was shorten from 90 minutes to 37 minutes. Along with decreasing the time of concentration, the peak discharge was increased from $4.37m^3/s$ to $111.13m^3/s$, and the runoff rate was also increased from 0.8% to 68%.

  • PDF

Determination of Detention Basin Size for NPS Control in TMDL Area (수질오염총량관리제하에서 친환경 개발사업을 위한 자연형 비점저감시설의 규모 산정)

  • Jung, Yong-Jun;Lee, Eun-Ju;Lee, So-Young;Lim, Keong-Ho;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Since 2000, environmental policies and regulations in Korea are rapidly changing to TMDL(Total Maximum Daily Load) and nonpoint source control. This is due to bad water quality in drinking water sources. Although many environmental facilities having high removal efficiency are constructed and applied in nationwide for controling various pollutants from wastewaters, the water quality in rivers is worse and worse because of nonpoint pollution. In fact, TMDL is a new environmental regulation controling total daily loadings from watershed areas. Actually, the nonpoint pollutant is originated from various landuses and its control is based on TMDL regulation. Therefore, this research is performed to determine the size of detention basin to control nonpoint pollutants from resort developing areas. The detention basin is one of best management practices, which is useful for controling pollutants and flooding from the developing areas. However, it should be designed and constructed with cost effective method. Recent 10 years rainfall data are used to determine the size of detention basin. The cost effective size is determined to 7.4mm accumulated rainfall.

  • PDF