• Title/Summary/Keyword: BARS

Search Result 2,237, Processing Time 0.03 seconds

The Experimental Study on the Bond behavior of High strength concrete (고강도 콘크리트의 부착거동에 관한 실험적 연구)

  • Lee, Joon-Gu;Kim, Woo;Park, Kwang-Su;Kim, Dae-Joung;Lee, Wong-Chan;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF

Mechanical Properties of Concrete with Statistical Variations (통계적 분산을 고려한 콘크리트의 역학적 특성)

  • Kim, Jee-Sang;Shin, Jeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.789-796
    • /
    • 2009
  • The randomness in the strength of a RC member is caused mainly by the variability of the mechanical properties of concrete and steel, the dimensions of concrete cross sections, and the placement of reinforcing bars and so on . Among those variations, the randomness and uncertainty of mechanical properties of concrete, such as compressive strength, tensile strength, and elastic modulus give the most significant influences and show relatively large statistical variations. In Korea, there has been little effort for the construction of its own statistical models for mechanical properties of concrete and steel, thus the foreign data have been utilized till now. In this paper, variability of compressive strength, tensile strength and elastic modulus of normal-weight structural concrete with various specified design compressive strength levels are examined based on the data obtained from a number of published and unpublished sources in this country and additional laboratory tests done by the authors. The inherent probabilistic models for compressive and tensile strength of normal-weight concrete are proposed as Gaussian distribution. Also, the relationships between compressive and splitting tensile strength and between compressive strength and elastic modulus in current KCI Code are verified and new ones are suggested based on local data.

Evaluation of Construction Loads of Slabs and Shores with Removing Shores and Placing Reshores (동바리 되세우기를 실시한 다층 건축구조물 바닥판의 시공하중 평가)

  • Chun, Sung-Chul;Tak, So-Young;Lee, Sung-Ho;Sho, Kwang-Ho;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.385-392
    • /
    • 2014
  • Reshoring makes slab deflect and support its own weight. The construction loads on the slabs in lower levels decrease using the reshoring. Simplified analysis proposed by ACI 347.2R-05 showed that if the reshoring is applied, construction loads on slabs and shores, and quantities of forms and shores decreased by 40%, 23%, 40%, and 50%, respectively. Shores' loads were comparatively measured on site. The measured reshore load was half of the load before removing the shores and was also lower than the measured shore load by 35%. To verify the safety of the reshoring, deflections of beams and strains of beam longitudinal bars were also measured. The maximum deflection was only L/5000 and the maximum bar strain was only 3.6% of the yield strain. Consequently, reshoring neither cause problems on the safety nor serviceability. In addition, the beam load was expected from the measured shores' loads and it coincides well with the predicted value by the simplified analysis of ACI 347.2R-05.

A study on experiment from the Stair Joints Constructed with PC system part of it using the HI-FORM DECK (HI-FORM DECK를 이용한 부분 PC 계단 접합부의 접합방식에 따른 실험적 연구)

  • Chang, Kug-Kwan;Lee, Eun-Jin;Jin, Byung-Chang;Kang, Woo-Joo;Han, Tae-Kyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.9-12
    • /
    • 2008
  • The semi-rigid joint is the shape of middle that can supplement the defect of pin joints and accept the good point of rigid joints. Recently, a study on the pin joints is activated in the country, but because the study on semi-rigid joints is not many, this study tried to prove with producing test model of three shape. The test models are rigid joint HI-R, semi-rigid joint HI-S, pin joint HI-P. As a result of the test, respectively HI-R, HI-S, HI-P appeared shear failure of joint, flexure failure of the top fixing, flexure failure of the lower part slipping stair slab, and the maximum strength is measured to 51.74, 51.4, 24.63kN, the stiffness is appeared 1.58, 1.19, 0.37 respectively, The yield strength is respectively kept 44.5, 47.3, 24kN, and ductility ratio is appeared to 3.31, 2.32, 1.54, when is based on KBC code, sag of the acting service load is appeared that HI-P model is over the standard. When is based on distribution of bars strain ratio, HI-S seems similar behavior incipiently, but after the yield, the semi-rigid joint was able to be judged better than pin joint because of the stress allotment of joint internal elements.

  • PDF

Experimental Evaluation on Effective Moment of Inertia of Reinforced Concrete Simple Beams and Continuos Beams Considering Tension Stiffening Effect (인장증강효과를 고려한 철근콘크리트 단순보와 연속보의 유효 단면2차모멘트에 대한 실험적 검증)

  • Lee, Seung-Bae;Yoon, Hyeong-Jae;Kim, Kang-Su;Kim, Sang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.285-288
    • /
    • 2008
  • A model for the effective moment of inertia $I_{\epsilon}$ as expressed in Branson's equation, in which reduction of the flexural rigidity of RC beams due to cracking are aptly taken into accoun,t is presented. However, KCI Code isn`t considered tension stiffening as it is in debonding of reinforcing bar. Therefore, this equation need to set up suitable to our design Code. The experimental work consisted of casting and testing a total of 6 simply supported reinforced concrete beams and a total of 4 continuos reinforced concrete beams under two point concentrated loads. Main parameters are concrete strength, coverage, bond between concrete and reinforcing bars, are known as have an effect on deflection and tension stiffening. Every test beams had the same $250{\times}350$mm rectangular section, with a simply supported clear span of 4,400 mm and a continuos clear span of 6,500 mm. Comparison of the test results with values obtained using the KCI Code equation of the effective moment of inertia showed a noticeable difference.

  • PDF

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Redispersible Polymer Powder with Nitrite-Type Hydrocalumite (재유화형 분말수지와 아질산형 하이드로칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Wan-Ki;Hong, Sun-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Nitrite-type hydrocalumite (calumite) is a material that can adsorb the chloride ions ($Cl^-$)that cause the corrosion of reinforcing bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. In this study, VA/E/MMA-modified mortars with calumite were prepared with various calumite contents and polymer binder-ratios, and tested for corrosion inhibition, chloride ion penetration, carbonation and drying shrinkage. As a result, regardless of polymer-binder ratio, the replacement of ordinary Portland cement with hydrocalumite has a marked effect on the corrosion inhibiting property of the polymer-modified mortars. However, chloride ion penetration and carbonation depths are somewhat increased with higher calumite content, but can be remarkably decreased depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to increase with the polymer-binder ratio and calumite content. VA/E/MMA-Modified mortars with 10 % calumite did not satisfy KS requirements. Accordingly, a calumite content of 5 % is recommended for the VA/E/MMA-modified mortars with calumite.

A Comparative Study on the Testing Methods for the Analysis of Tensile Strength of GERP Rebars (GFRP 보강근의 인장강도 분석을 위한 시험방법 비교 연구)

  • You, Young-Chan;Park, Ji-Sun;You, Young-Jun;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.303-312
    • /
    • 2006
  • The main objective of this experimental study is to examine the feasibilities of each testing method with various kinds of grip systems for the analysis of tensile strength of GFRP(glass fiber reinforced polymer) reinforcing bars. Three types of grip systems were examined such as resin-sleeved pipe-type grip proposed by CSA(Canadian Standard Association), frictional resistance type metal grip by ASTM(American Standard for Testing and Materials) and wedge-inserted cone-type grip normally used in prestressing tendons. Also, mechanical properties of GFRP rebars with different surface deformations were investigated for each different type of testing grip used in this study. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made according to the CSA S806-02 recommendations. From the test results, it was found that the highest tensile strengths of GFRP rebars were observed when tested by resin-sleeved grip system regardless of their different surface deformations. But tensile strengths of GFRP rebars by ASTM grip system are only 10% less than those by CSA grip system. On the other hand, CSA grip is not only difficult to prepare but also not disposable. Therefore, ASTM grip system is recommended as a practical alternative to estimate the tensile strength of GFRP rebars.

Shear Capacity of Precast Concrete Triple Ribs Slab (프리캐스트 콘크리트 트리플 리브 슬래브의 전단성능)

  • Hwang, Seung-Bum;Seo, Soo-Yeon;Lee, Kang-Cheol;Lee, Seok-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.489-496
    • /
    • 2016
  • Recently, a concern about hollow core precast concrete (PC) slab has been increased as a method to improve the construction ability by reducing the self weight of structures during the construction. Hollow core slab which is known as a typical PC slab in domestic construction of PC building has a problem to put shear reinforcements in the web of element during the production of element in the factory. With regard to this point, recently, tripple ribs slab (TRS) which can be said as a new type of half PC slab system was developed. In TRS, it is possible to place shear reinforcements in PC element during the production of the element in the factory. This paper presents the shear test result of TRS which was done by one point loading test under simple support condition. Test parameters are the presence of cast-in-place (CIP) concrete and the contribution of lattice bars. From the test, it was found that the TRS has sufficient shear capacity to resist the design load and its strength can be predicted by the code equations for general beam. It is recommended to ignore the strength of lattice bar in the calculation of shear strength during the construction since its contribution is too low to be considered when CIP is not casted.

Analytical Study on Behavior Characteristic of Shear Friction on Reinforced Concrete Shear Wall-Foundation Interface using High-Strength Reinforcing Bar (고강도 전단철근을 사용한 철근콘크리트 전단벽체-기초계면에서의 전단마찰 거동특성에 대한 해석적 연구)

  • Cheon, Ju-Hyun;Lee, Ki-Ho;Baek, Jang-Woon;Park, Hong-Gun;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.473-480
    • /
    • 2016
  • The purpose of this study is to provide analytical method to reasonably evaluate the complicated failure behaviors of shear friction of reinforced concrete shear wall specimens using grade 500 MPa high-strength bars. A total of 16 test specimens with a variety of variables such as aspect ratio, friction coefficient of interface in construction joint, reinforcement details, reinforcement ratio in each direction, material properties were selected and the analysis was performed by using a non-linear finite element analysis program (RCAHEST) applying the modified shear friction constitutive equation in interface based on the concrete design code (KCI, 2012) and CEB-FIP Model code 2010. The mean and coefficient of variation for maximum load from the experiment and analysis results was predicted 1.04 and 17% respectively and properly evaluated failure mode and overall behavior characteristic until failure occur. Based on the results, the analysis program that was applied modified shear friction constitutive equation is judged as having a relatively high reliability for the analysis results.

Splice Strengths of Noncontact Lap Splices Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 비접촉 겹침 이음의 이음 강도 산정)

  • Hong, Sung-Gul;Chun, Sung-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.199-207
    • /
    • 2007
  • Strut-and-tie models for noncontact lap splices are presented and parameters affecting the effective lap length $(l_p)$ and the splice strength are discussed in this paper. The effective lap length along which bond stress is developed is shorter than the whole lap length. The effective lap length depends on the transverse reinforcement ratio $({\Phi})$ and the ratio of spacing to lap length $({\alpha})$. As the splice-bar spacing becomes wider, the effective lap length decreases and, therefore, the splice strength decreases. The influence of the ratio ${\alpha}$ on the effective lap length becomes more effective when the transverse reinforcement ratio is low. Because the slope of the strut developed between splice-bars becomes steeper as the ratio ${\Phi}$ becomes lower, the splice-bar spacing significantly affects the effective lap length. The proposed strut-and-tie models for noncontact lap splices are capable of considering material and geometric properties and, hence, providing the optimal design for detailing of reinforcements. The proposed strut-and-tie model can explain the experimental results including cracking patterns and the influence of transverse reinforcements on the splice strength reported in the literature. From the comparison with the test results of 25 specimens, the model can predict the splice strengths with 11.1% of coefficient of variation.