• Title/Summary/Keyword: BARRIER METAL

Search Result 416, Processing Time 0.032 seconds

Cu CMP Characteristics and Electrochemical plating Effect (Cu 배선 형성을 위한 CMP 특성과 ECP 영향)

  • Kim, Ho-Youn;Hong, Ji-Ho;Moon, Sang-Tae;Han, Jae-Won;Kim, Kee-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.252-255
    • /
    • 2004
  • 반도체는 high integrated, high speed, low power를 위하여 design 뿐만 아니라 재료 측면에서도 많은 변화를 가져오고 있으며, RC delay time을 줄이기 위하여 Al 배선보다 비저항이 낮은 Cu와 low-k material 적용이 그 대표적인 예이다. 그러나, Cu 배선의 경우 dry etching이 어려우므로, 기존의 공정으로는 그 한계를 가지므로 damascene 또는 dual damascene 공정이 소개, 적용되고 있다. Damascene 공정은 절연막에 photo와 RIE 공정을 이용하여 trench를 형성시킨 후 electrochemical plating 공정을 이용하여 trench에 Cu를 filling 시킨다. 이후 CMP 공정을 이용하여 절연막 위의 Cu와 barrier material을 제거함으로서 Cu 배선을 형성하게 된다. Dual damascene 공정은 trench와 via를 동시에 형성시키는 기술로 현재 대부분의 Cu 배선 공정에 적용되고 있다. Cu CMP는 기존의 metal CMP와 마찬가지로 oxidizer를 이용한 Cu film의 화학반응과 연마 입자의 기계가공이 기본 메커니즘이다. Cu CMP에서 backside pressure 영향이 uniformity에 미치는 영향을 살펴보았으며, electrochemical plating 공정에서 발생하는 hump가 CMP 결과에 미치는 영향과 dishing 결과를 통하여 그 영향을 평가하였다.

  • PDF

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.339-347
    • /
    • 2021
  • In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

Enhancement of a mechanical property of metal sheaths (Cu and Nb) of MgB2 superconducting wires by E-beam irradiation

  • Kim, C.J.;Lee, T.R.;Jun, B.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.30-34
    • /
    • 2022
  • Effects of electron beam (EB) irradiation on the mechanical strength of Cu (conducting sheath) and Nb (diffusion barrier) of Cu/Nb/MgB2 superconducting was investigated. Wire- and tape-type Cu/Nb/MgB2 samples were irradiated at E-beam energy of 2.5 MeV and 5 mA and a maximum E-beam dose was 5×1017 e/m2. The hardness value of Cu and Nb region was measured by the Vickers micro-hardness method. In the case of the wire sample, the hardness of Cu and Nb increased proportionally as the dose was increased up to 5×1017 e/m2, whereas in the case of the tape sample, the hardness increased up to a dose of 0.5×1017 e/m2, and decreased slightly 5×1017 e/m2. The hardness increase of Cu and Nb is believed to be due to the decrease of the deformability of Cu and Nb due to the defects formed inside the materials by E-beam irradiation.

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.471-479
    • /
    • 2021
  • In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

Characterization of Anodized Al 1050 with Electrochemically Deposited Cu, Ni and Cu/Ni and Their Behavior in a Model Corrosive Medium

  • Girginov, Christian;Kozhukharov, Stephan;Tsanev, Alexander;Dishliev, Angel
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.188-203
    • /
    • 2021
  • The specific benefits of the modified films formed on preliminary anodized aluminum, including the versatility of their potential applications impose the need for evaluation of the exploitation reliability of these films. In this aspect, the durability of Cu and Ni modified anodized aluminum oxide (AAO) films on the low-doped AA1050 alloy was assessed through extended exposure to a 3.5% NaCl model corrosive medium. The electrochemical measurements by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 and 720 hours of exposure have revealed that the obtained films do not change their obvious barrier properties. In addition, supplemental analyses of the coatings were performed, in order to elucidate the impact of the AC-deposition of Cu and Ni inside the pores. The scanning electron microscopy (SEM) images have shown that the surface topology is not affected and resembles the typical surface of an etched metal. The subsequent energy dispersive X-ray spectroscopy (EDX) tests have revealed a predominance of Cu in the combined AAO-Cu/Ni layers, whereas additional X-ray photoelectron (XPS) analyses showed that both metals form oxides with different oxidation states due to alterations in the deposition conditions, promoted by the application of AC-polarization of the samples.

A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method (양극산화 방법을 이용한 기능성 알루미늄 3003 합금의 표면 특성 및 부식 거동 연구)

  • Kim, Jisoo;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.290-299
    • /
    • 2022
  • Anodizing is an electrochemical surface treatment method conferring corrosion resistance and durability by forming a thick anodization film on the metal surface. Aluminum has a long service life and high thermal conductivity and formability, as well as excellent corrosion resistance. Aluminum 3003 alloy has improved formability, strength, and corrosion resistance due to the addition of a small amount of manganese. However, corrosion occurs in seawater and environments polluted with corrosion-inducing substances, which reduce corrosion resistance. Therefore, it is necessary to artificially form a thick anodized film to improve corrosion resistance. In this study, the anodization treatment time was 4 minutes, and voltages of 10 V, 20 V, 30 V, 40 V, 50 V, 60 V, 70 V, 80 V, 90 V, and 100 V were applied. The thickness and pore size of the oxide film increased according to the applied voltage. A barrier film was formed under voltage conditions from 10 V to 50 V, and a porous film was formed under voltage conditions from 60 V to 100 V. After anodizing, coating was applied. Wettability and corrosion resistance were observed before and after coating according to the surface shape and thickness of the oxide film.

Integration Technologies for 3D Systems

  • Ramm, P.;Klumpp, A.;Wieland, R.;Merkel, R.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.261-278
    • /
    • 2003
  • Concepts.Wafer-Level Chip-Scale Concept with Handling Substrate.Low Accuracy Placement Layout with Isolation Trench.Possible Pitch of Interconnections down to $10{\mu}{\textrm}{m}$ (Sn-Grains).Wafer-to-Wafer Equipment Adjustment Accuracy meets this Request of Alignment Accuracy (+/-1.5 ${\mu}{\textrm}{m}$).Adjustment Accuracy of High-Speed Chip-to-Wafer Placement Equipment starts to meet this request.Face-to-Face Modular / SLID with Flipped Device Orientation.interchip Via / SLID with Non-Flipped Orientation SLID Technology Features.Demonstration with Copper / Tin-Alloy (SLID) and W-InterChip Vias (ICV).Combination of reliable processes for advanced concept - Filling of vias with W as standard wafer process sequence.No plug filling on stack level necessary.Simultanious formation of electrical and mechanical connection.No need for underfiller: large area contacts replace underfiller.Cu / Sn SLID layers $\leq$ $10{\mu}{\textrm}{m}$ in total are possible Electrical Results.Measurements of Three Layer Stacks on Daisy Chains with 240 Elements.2.5 Ohms per Chain Element.Contribution of Soldering Metal only in the Range of Milliohms.Soldering Contact Resistance ($0.43\Omega$) dominated by Contact Resistance of Barrier and Seed Layer.Tungsten Pin Contribution in the Range of 1 Ohm

  • PDF

Thermoelastic eigenfrequency of pre-twisted FG-sandwich straight/curved blades with rotational effect

  • Souvik S. Rathore;Vishesh R. Kar;Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.519-533
    • /
    • 2023
  • This work focuses on the dynamic analysis of thermal barrier coated straight and curved turbine blades modelled as functionally graded sandwich panel under thermal environment. The pre- twisted straight/curved blade model is considered to be fixed to the hub and, the complete assembly of the hub and blade are assumed to be rotating. The functionally graded sandwich composite blade is comprised of functionally graded face-sheet material and metal alloy core. The constituents' material properties are assumed to be temperature-dependent, however, the overall properties are evaluated using Voigt's micromechanical scheme in conjunction with the modified power-law functions. The blade model kinematics is based on the equivalent single-layer shear deformation theory. The equations of motion are derived using the extended Hamilton's principle by including the effect of centrifugal forces, and further solved via 2D- isoparametric finite element approximations. The mesh refinement and validation tests are performed to illustrate the stability and accurateness of the present model. In addition, frequency characteristics of the pre-twisted rotating sandwich blades are computed under thermal environment at various sets of parametric conditions such as twist angles, thickness ratios, aspect ratios, layer thickness ratios, volume fractions, rotational velocity and blade curvatures which can be further useful for designing the blade type structures under turbine operating conditions.

Performance variation of Nickel-Cobalt-Manganese lithium-ion battery by cathode surface coating materials (NCM 리튬 이온 배터리의 양극 표면 코팅물질에 따른 성능변화 )

  • JinUk Yoo;Sung Gyu Pyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.57-70
    • /
    • 2024
  • Nickel-cobalt-manganese (NCM) lithium-ion batteries(LIBs) are increasingly prominent in the energy storage system due to their high energy density and cost-effectiveness. However, they face significant challenges, such as rapid capacity fading and structural instability during high-voltage operation cycles. Addressing these issues, numerous researchers have studied the enhancement of electrochemical performance through the coating of NCM cathode materials with substances like metal oxides, lithium composites, and polymers. Coating these cathode materials serves several critical functions: it acts as a protection barrier against electrolyte decomposition, mitigates the dissolution of transition metals, enhances the structural integrity of the electrode, and can even improve the ionic conductivity of the cathode. Ultimately, these improvements lead to better cycle stability, increased efficiency, and enhanced overall battery life, which are crucial for the advancement of NCM-based lithium-ion batteries in high-demand applications. So, this paper will review various cathode coating materials and examine the roles each plays in improving battery performance.

Monolithic 3D-IC 구현을 위한 In-Sn을 이용한 Low Temperature Eutectic Bonding 기술

  • Sim, Jae-U;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.338-338
    • /
    • 2013
  • Monolithic three-dimensional integrated circuits (3D-ICs) 구현 시 bonding 과정에서 발생되는 aluminum (Al) 이나 copper (Cu) 등의 interconnect metal의 확산, 열적 스트레스, 결함의 발생, 도펀트 재분포와 같은 문제들을 피하기 위해서는 저온 공정이 필수적이다. 지금까지는 polymer 기반의 bonding이나 Cu/Cu와 같은 metal 기반의 bonding 등과 같은 저온 bonding 방법이 연구되어 왔다. 그러나 이와 같은 bonding 공정들은 공정 시 void와 같은 문제가 발생하거나 공정을 위한 특수한 장비가 필수적이다. 반면, 두 물질의 합금을 이용해 녹는점을 낮추는 eutectic bonding 공정은 저온에서 공정이 가능할 뿐만 아니라 void의 발생 없이 강한 bonding 강도를 얻을 수 있다. Aluminum-germanium (Al-Ge) 및 aluminum-indium (Al-In) 등의 조합이 eutectic bonding에 이용되어 각각 $424^{\circ}C$$454^{\circ}C$의 저온 공정을 성취하였으나 여전히 $400^{\circ}C$이상의 eutectic 온도로 인해 3D-ICs의 구현 시에는 적용이 불가능하다. 이러한 metal 조합들에 비해 indium (In)과 tin (Sn)은 각각 $156^{\circ}C$$232^{\circ}C$로 굉장히 낮은 녹는점을 가지고 있기 때문에 In-Sn 조합은 약 $120^{\circ}C$ 정도의 상당히 낮은eutectic 온도를 갖는다. 따라서 본 연구팀은 In-Sn 조합을 이용하여 $200^{\circ}C$ 이하에서monolithic 3D-IC 구현 시 사용될 eutectic bonding 공정을 개발하였다. 100 nm SiO2가 증착된 Si wafer 위에 50 nm Ti 및 410 nm In을 증착하고, 다른Si wafer 위에 50 nm Ti 및 500 nm Sn을 증착하였다. Ti는 adhesion 향상 및 diffusion barrier 역할을 위해 증착되었다. In과 Sn의 두께는 binary phase diagram을 통해 In-Sn의 eutectic 온도인 $120^{\circ}C$ 지점의 조성 비율인 48 at% Sn과 52 at% In에 해당되는 410 nm (In) 그리고 500 nm (Sn)로 결정되었다. Bonding은 Tbon-100 장비를 이용하여 $140^{\circ}C$, $170^{\circ}C$ 그리고 $200^{\circ}C$에서 2,000 N의 압력으로 진행되었으며 각각의 샘플들은 scanning electron microscope (SEM)을 통해 확인된 후, 접합 강도 테스트를 진행하였다. 추가로 bonding 층의 In 및 Sn 분포를 확인하기 위하여 Si wafer 위에 Ti/In/Sn/Ti를 차례로 증착시킨 뒤 bonding 조건과 같은 온도에서 열처리하고secondary ion mass spectrometry (SIMS) profile 분석을 시행하였다. 결론적으로 본 연구를 통하여 충분히 높은 접합 강도를 갖는 In-Sn eutectic bonding 공정을 $140^{\circ}C$의 낮은 공정온도에서 성공적으로 개발하였다.

  • PDF