• Title/Summary/Keyword: BAK

Search Result 1,459, Processing Time 0.023 seconds

Distribution Characteristic of Vascular Plants in Mt. Masan at Goseong-gun, Gangwon-do, Korea (DMZ와 인접한 마산(강원도 고성군)의 관속식물 분포 연구)

  • Yun, Ho-Geun;Lee, Jong-Won;Jung, Su-Young;Hwang, Hee-Suk;Bak, Gi-Ppeum;Park, Jin-Sun;Kim, Sang-Jun
    • Korean Journal of Plant Resources
    • /
    • v.35 no.1
    • /
    • pp.71-99
    • /
    • 2022
  • This study was conducted to investigate the vascular flora of Masan, located in Goseong-gun, Gangwon-do, and to comprehend the distribution of remarkable plants such as rare and Korea endemic plants and invasive alien plants. The survey was carried out the distribution of vascular plants 11 times per season from 2010 to 2018. A total of 619 taxa in 93 families, 328 genera, 529 species, 6 subspecies, 78 varieties and 6 forms were identified on mt. Masan. Among them, Korean endemic plants are 21 taxa including Saussurea diamantica Nakai and are plants designated by the Korea Forest Service are 20 taxa counting Saxifraga octopetala Nakai. Invasive alien plants were classified a total of 35 taxa inclusive of Trifolium pratense L. (WS), Aster pilosus Willd. (SS), Coreopsis lanceolata L. (SR), Rumex obtusifolius L. (SC) and Lindernia dubia (L.) Pennell (CS). The naturalization rate was 5% and the urbanization index was 10.0%, respectively. Although this study identified the diverse distribution of major plants such as rare and endemic plants around Masan, it was confirmed that invasive alien plants, which pose a great threat to forest biodiversity conservation and promotion, spread and distributed in a specific section Therefore, it is urgent to establish a conservation strategy and countermeasures.

Bibliometric analysis of source memory in human episodic memory research (계량서지학 방법론을 활용한 출처기억 연구분석: 인간 일화기억 연구를 중심으로)

  • Bak, Yunjin;Yu, Sumin;Nah, Yoonjin;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.23-50
    • /
    • 2022
  • Source memory is a cognitive process that combines the representation of the origin of the episodic experience with an item. By studying this daily process, researchers have made fundamental discoveries that make up the foundation of brain and behavior research, such as executive function and binding. In this paper, we review and conduct a bibliometric analysis on source memory papers published from 1989 to 2020. This review is based on keyword co-occurrence networks and author citation networks, providing an in-depth overview of the development of source memory research and future directions. This bibliometric analysis discovers a change in the research trends: while research prior to 2010 focused on individuality of source memory as a cognitive function, more recent papers focus more on the implication of source memory as it pertains to connectivity between disparate brain regions and to social neuroscience. Keyword network analysis shows that aging and executive function are continued topics of interest, although frameworks in which they are viewed have shifted to include developmental psychology and meta memory. The use of theories and models provided by source memory research seem essential for the future development of cognitive enhancement tools within and outside of the field of Psychology.

A Study on Biomass Estimation Technique of Invertebrate Grazers Using Multi-object Tracking Model Based on Deep Learning (딥러닝 기반 다중 객체 추적 모델을 활용한 조식성 무척추동물 현존량 추정 기법 연구)

  • Bak, Suho;Kim, Heung-Min;Lee, Heeone;Han, Jeong-Ik;Kim, Tak-Young;Lim, Jae-Young;Jang, Seon Woong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.237-250
    • /
    • 2022
  • In this study, we propose a method to estimate the biomass of invertebrate grazers from the videos with underwater drones by using a multi-object tracking model based on deep learning. In order to detect invertebrate grazers by classes, we used YOLOv5 (You Only Look Once version 5). For biomass estimation we used DeepSORT (Deep Simple Online and real-time tracking). The performance of each model was evaluated on a workstation with a GPU accelerator. YOLOv5 averaged 0.9 or more mean Average Precision (mAP), and we confirmed it shows about 59 fps at 4 k resolution when using YOLOv5s model and DeepSORT algorithm. Applying the proposed method in the field, there was a tendency to be overestimated by about 28%, but it was confirmed that the level of error was low compared to the biomass estimation using object detection model only. A follow-up study is needed to improve the accuracy for the cases where frame images go out of focus continuously or underwater drones turn rapidly. However,should these issues be improved, it can be utilized in the production of decision support data in the field of invertebrate grazers control and monitoring in the future.

Prediction of Potential Habitat and Damage Amount of Rare·Endemic Plants (Sophora Koreensis Nakai) Using NBR and MaxEnt Model Analysis - For the Forest Fire Area of Bibongsan (Mt.) in Yanggu - (NBR과 MaxEnt 모델 분석을 활용한 희귀특산식물(개느삼) 분포 및 피해량 예측 - 양구 비봉산 산불피해지를 대상으로-)

  • Yun, Ho-Geun;Lee, Jong-Won;An, Jong-Bin;Yu, Seung-Bong;Bak, Gi-Ppeum;Shin, Hyun-Tak;Park, Wan-Geun;Kim, Sang-Jun
    • Korean Journal of Plant Resources
    • /
    • v.35 no.2
    • /
    • pp.169-182
    • /
    • 2022
  • This study was conducted to predict the distribution of rare·endemic plants (Sophora koreensis Nakai) in the border forests where wildfire damage occurred and to quantify the damage. For this purpose, we tried to derive more accurate results through forest area damage (NBR) according to the Burn severity of wildfires, damage by tree species type (Vegetation map), and MaxEnt model. For Burn severity analysis, satellite imagery (Landsat-8) was used to analyze Burn severity (ΔNBR2016-2015) and to derive the extent of damage. To prepare the Vegetation map, the land cover map prepared by the Ministry of Environment, the Vegetation map prepared by the Korea Forest Service, and the vegetation survey conducted by itself were conducted to prepare the clinical map before and after the forest fire. Lastly, for MaxEnt model analysis, the AUC value was derived by using the habitat coordinates of Sophora koreensis Nakai based on the related literature and self-report data. As a result of combining the Maxent model analysis data with the Burn severity data, it was confirmed that 45.9% of the 44,760 m2 of habitat (predicted) area of Sophora koreensis Nakai in the wildfire damaged area or 20,552 m2, was damaged.

Semantic Segmentation of the Submerged Marine Debris in Undersea Images Using HRNet Model (HRNet 기반 해양침적쓰레기 수중영상의 의미론적 분할)

  • Kim, Daesun;Kim, Jinsoo;Jang, Seonwoong;Bak, Suho;Gong, Shinwoo;Kwak, Jiwoo;Bae, Jaegu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1329-1341
    • /
    • 2022
  • Destroying the marine environment and marine ecosystem and causing marine accidents, marine debris is generated every year, and among them, submerged marine debris is difficult to identify and collect because it is on the seabed. Therefore, deep-learning-based semantic segmentation was experimented on waste fish nets and waste ropes using underwater images to identify efficient collection and distribution. For segmentation, a high-resolution network (HRNet), a state-of-the-art deep learning technique, was used, and the performance of each optimizer was compared. In the segmentation result fish net, F1 score=(86.46%, 86.20%, 85.29%), IoU=(76.15%, 75.74%, 74.36%), For the rope F1 score=(80.49%, 80.48%, 77.86%), IoU=(67.35%, 67.33%, 63.75%) in the order of adaptive moment estimation (Adam), Momentum, and stochastic gradient descent (SGD). Adam's results were the highest in both fish net and rope. Through the research results, the evaluation of segmentation performance for each optimizer and the possibility of segmentation of marine debris in the latest deep learning technique were confirmed. Accordingly, it is judged that by applying the latest deep learning technique to the identification of submerged marine debris through underwater images, it will be helpful in estimating the distribution of marine sedimentation debris through more accurate and efficient identification than identification through the naked eye.

Development of Marine Debris Monitoring Methods Using Satellite and Drone Images (위성 및 드론 영상을 이용한 해안쓰레기 모니터링 기법 개발)

  • Kim, Heung-Min;Bak, Suho;Han, Jeong-ik;Ye, Geon Hui;Jang, Seon Woong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1109-1124
    • /
    • 2022
  • This study proposes a marine debris monitoring methods using satellite and drone multispectral images. A multi-layer perceptron (MLP) model was applied to detect marine debris using Sentinel-2 satellite image. And for the detection of marine debris using drone multispectral images, performance evaluation and comparison of U-Net, DeepLabv3+ (ResNet50) and DeepLabv3+ (Inceptionv3) among deep learning models were performed (mIoU 0.68). As a result of marine debris detection using satellite image, the F1-Score was 0.97. Marine debris detection using drone multispectral images was performed on vegetative debris and plastics. As a result of detection, when DeepLabv3+ (Inceptionv3) was used, the most model accuracy, mean intersection over union (mIoU), was 0.68. Vegetative debris showed an F1-Score of 0.93 and IoU of 0.86, while plastics showed low performance with an F1-Score of 0.5 and IoU of 0.33. However, the F1-Score of the spectral index applied to generate plastic mask images was 0.81, which was higher than the plastics detection performance of DeepLabv3+ (Inceptionv3), and it was confirmed that plastics monitoring using the spectral index was possible. The marine debris monitoring technique proposed in this study can be used to establish a plan for marine debris collection and treatment as well as to provide quantitative data on marine debris generation.

Feasibility Study for Derivation of Tropospheric Ozone Motion Vector Using Geostationary Environmental Satellite Measurements (정지궤도 위성 대류권 오존 관측 자료를 이용한 대류권 이동벡터 산출 가능성 연구)

  • Shin, Daegeun;Kim, Somyoung;Bak, Juseon;Baek, Kanghyun;Hong, Sungjae;Kim, Jaehwan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1069-1080
    • /
    • 2022
  • The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.

A Comparative Study on the Object Detection of Deposited Marine Debris (DMD) Using YOLOv5 and YOLOv7 Models (YOLOv5와 YOLOv7 모델을 이용한 해양침적쓰레기 객체탐지 비교평가)

  • Park, Ganghyun;Youn, Youjeong;Kang, Jonggu;Kim, Geunah;Choi, Soyeon;Jang, Seonwoong;Bak, Suho;Gong, Shinwoo;Kwak, Jiwoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1643-1652
    • /
    • 2022
  • Deposited Marine Debris(DMD) can negatively affect marine ecosystems, fishery resources, and maritime safety and is mainly detected by sonar sensors, lifting frames, and divers. Considering the limitation of cost and time, recent efforts are being made by integrating underwater images and artificial intelligence (AI). We conducted a comparative study of You Only Look Once Version 5 (YOLOv5) and You Only Look Once Version 7 (YOLOv7) models to detect DMD from underwater images for more accurate and efficient management of DMD. For the detection of the DMD objects such as glass, metal, fish traps, tires, wood, and plastic, the two models showed a performance of over 0.85 in terms of Mean Average Precision (mAP@0.5). A more objective evaluation and an improvement of the models are expected with the construction of an extensive image database.

Quntitative Analysis of Calcium Carbonate Polymorphs by Peak Area of XRD (XRD 피크 면적을 이용한 탄산칼슘 결정 형태의 정량분석)

  • Bak, Young-Cheol
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.564-573
    • /
    • 2022
  • Calcium carbonate (CaCO3) exhibits three polymorphs: calcite with arhombohedral, vaterite with a spherical, and aragonite with a needle-like structure. Qualitative and quantitative analyses of the morphology of CaCO3 are very important to investigate the synthesis of single-crystal vaterite and aragonite. In this work, the polymorphs of calcium carbonate were quantitatively analyzed using XRD. Pure vaterite and pure aragonite were synthesized and the peak distribution of a single phase was analyzed. The vaterite fraction of a mixture of calcite and vaterite was calculated based on the intensity of a specific diffraction peak, and compared to the results based on the peak area. The mean value of fsV (the correction factor for the peak area of vaterite) was 0.654. The phase analysis of calcite-aragonite mixtures was performed, and the mean value of fsA (the correction factor for the peak area of aragonite) was obtained as 0.6713. Using these factors, Eq. (24)~Eq. (32) for the quantitative analysis based on the total peak area of XRD were derived to calculate the phase contents of ternary phase CaCO3. And three-component XRD section was defined considering overlapping sections.

Semantic Segmentation of the Habitats of Ecklonia Cava and Sargassum in Undersea Images Using HRNet-OCR and Swin-L Models (HRNet-OCR과 Swin-L 모델을 이용한 조식동물 서식지 수중영상의 의미론적 분할)

  • Kim, Hyungwoo;Jang, Seonwoong;Bak, Suho;Gong, Shinwoo;Kwak, Jiwoo;Kim, Jinsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.913-924
    • /
    • 2022
  • In this paper, we presented a database construction of undersea images for the Habitats of Ecklonia cava and Sargassum and conducted an experiment for semantic segmentation using state-of-the-art (SOTA) models such as High Resolution Network-Object Contextual Representation (HRNet-OCR) and Shifted Windows-L (Swin-L). The result showed that our segmentation models were superior to the existing experiments in terms of the 29% increased mean intersection over union (mIOU). Swin-L model produced better performance for every class. In particular, the information of the Ecklonia cava class that had small data were also appropriately extracted by Swin-L model. Target objects and the backgrounds were well distinguished owing to the Transformer backbone better than the legacy models. A bigger database under construction will ensure more accuracy improvement and can be utilized as deep learning database for undersea images.