• 제목/요약/키워드: BAC library

검색결과 26건 처리시간 0.017초

Korean BAC Library Construction and Characterization of HLA-DRA, HLA-DRB3

  • Park, Mi-Hyun;Lee, Hye-Ja;Bok, Jeong;Kim, Cheol-Hwan;Hong, Seong-Tshool;Park, Chan;Kimm, Ku-Chan;Oh, Berm-Seok;Lee, Jong-Young
    • BMB Reports
    • /
    • 제39권4호
    • /
    • pp.418-425
    • /
    • 2006
  • A human bacterial artificial chromosome (BAC) library was constructed with high molecular weight DNA extracted from the blood of a male Korean. This Korean BAC library contains 100,224 clones of insert size ranging from 70 to 150 kb, with an average size of 86 kb, corresponding to a 2.9-fold redundancy of the genome. The average insert size was determined from 288 randomly selected BAC clones that were well distributed among all the chromosomes. We developed a pooling system and three-step PCR screen for the Korean BAC library to isolate desired BAC clones, and we confirmed its utility using primer pairs designed for one of the clones. The Korean BAC library and screening pools will allow PCR-based screening of the Korean genome for any gene of interest. We also determined the allele types of HLA-DRA and HLA-DRB3 of clone KB55453, located in the HLA class II region on chromosome 6p21.3. The HLA-DRA and DRB3 genes in this clone were identified as the DRA*010202 and DRB3*01010201 types, respectively. The haplotype found in this library will provide useful information in future human disease studies.

Construction of a Bacterial Artificial Chromosome Library Containing Large BamHI Genomic Fragments from Medicago truncatula and Identification of Clones Linked to Hypernodulating Genes

  • Park So-Yeon;Nam Young-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.256-263
    • /
    • 2006
  • In the model legume Medicago truncatula, two mutants, sickle and sunn, exhibit morphologically and genetically distinct hypernodulation phenotypes. However, efforts to isolate the single recessive and single semidominant genes for sickle and sunn, respectively, by map-based cloning have so far been unsuccessful, partly due to the absence of clones that enable walks from linked marker positions. To help resolve these difficulties, a new bacterial artificial chromosome (BAC) library was constructed using BamHI-digested genomic fragments. A total of 23,808 clones were collected from ligation mixtures prepared with double-size-selected high-molecular-weight DNA. The average insert size was 116 kb based on an analysis of 88 randomly selected clones using NotI digestion and pulsed-field gel electrophoresis. About 18.5% of the library clones lacked inserts. The frequency of the BAC clones carrying chloroplast or mitochondrial DNA was 0.98% and 0.03%, respectively. The library represented approximately 4.9 haploid M. truncatula genomes. Hybridization of the BAC clone filters with a $C_{0}t-l$ DNA probe revealed that approximately 37% of the clones likely carried repetitive sequence-enriched DNA. An ordered array of pooled BAC DNA was screened by polymerase chain reactions using 13 sequence-characterized molecular markers that belonged to the eight linkage groups. Except for two markers, one to five positive BAC clones were obtained per marker. Accordingly, the sickle- and sunn-linked BAC clones identified herein will be useful for the isolation of these biotechnologically important genes. The new library will also provide clones that fill the gaps between preexisting BAC contigs, facilitating the physical mapping and genome sequencing of M. truncatula.

Chromosomal Localization of Korean Cattle (Hanwoo) BAC Clones via BAC end Sequence Analysis

  • Chae, Sung-Hwa;Kim, Jae-Woo;Choi, Jae Min;Larkin, Denis M.;Everts-van der Wind, Annelie;Park, Hong-Seog;Yeo, Jung-Sou;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권3호
    • /
    • pp.316-327
    • /
    • 2007
  • In this study, a Korean native cattle strain (Hanwoo) evidencing high performance in terms of both meat quality and quantity was employed in the generation of 150,000 BAC clones with an average insert size of 140 kb, and corresponding to about a 6X coverage of bovine chromosomal DNA. The BAC clones were pooled in a mini-scale via three rounds of a pooling protocol, and the efficiency of this pooling protocol was evaluated by testing the accuracy of accessibility to the positive clones, via a PCR-based screening method. Two sets of primers designed from each of two known genes were tested, and each yielded 2 or 3 positive clones for each gene, thereby indicating that the BAC library pooling system was appropriate with regard to the accession of the target BAC clones. Analyses of $3.3{\times}10^6$ base pairs obtained from the 7,090 BAC end sequence (BES) showed that 34.88% of the DNA sequence harbored the repetition sequence. Analysis of the 7,090 BES to the $1^{st}$ and $2^{nd}$ generation radiation hybrid map of the cattle genome, using the COMPASS program designed for the construction of a cattle-human comparative mapping, resulted in the localization of a total of 1,374 clones proximal to 339 $1^{st}$ generation markers, and 1,721 clones proximal to 664 $2^{nd}$ generation markers. Collectively, the BAC library and pooling system of the BAC clones from the Korean cattle, coupled with the chromosome-localized BAC clones, will provide us with novel tools for the excavation of desired clones for genome mapping and sequencing, and will also furnish us with additional information regarding breed differences in cattle.

Construction of Chromosome-Specific BAC Libraries from the Filamentous Ascomycete Ashbya gossypii

  • Choi Sang-Dun
    • Genomics & Informatics
    • /
    • 제4권2호
    • /
    • pp.80-86
    • /
    • 2006
  • It is clear that the construction of large insert DNA libraries is important for map-based gene cloning, the assembly of physical maps, and simple screening for specific genomic sequences. The bacterial artificial chromosome (BAC) system is likely to be an important tool for map-based cloning of genes since BAC libraries can be constructed simply and analyzed more efficiently than yeast artificial chromosome (YAC) libraries. BACs have significantly expanded the size of fragments from eukaryotic genomes that can be cloned in Escherichia coli as plasmid molecules. To facilitate the isolation of molecular-biologically important genes in Ashbya gossypii, we constructed Ashbya chromosome-specific BAC libraries using pBeloBAC11 and pBACwich vectors with an average insert size of 100 kb, which is equivalent to 19.8X genomic coverage. pBACwich was developed to streamline map-based cloning by providing a tool to integrate large DNA fragments into specific sites in chromosomes. These chromosome-specific libraries have provided a useful tool for the further characterization of the Ashbya genome including positional cloning and genome sequencing.

배추 유전체열구의 현황과 전망 (Korea Brassica Genome Project: Current Status and Prospective)

  • 최수련;박지영;박범석;김호일;임용표
    • Journal of Plant Biotechnology
    • /
    • 제33권3호
    • /
    • pp.153-160
    • /
    • 2006
  • 유전체 연구란 목적하는 유전체의 구조를 밝히고 가지고 있는 모든 유전자의 기능 및 진화과정을 망라하여 이해하고자 하는 것이다. 계통발생학상 애기장대와 연관되어 있는 Brassica rapa는 채소, 유지 및 사료로 이용되는 중요한 작물의 하나이다. Brassica rapa의 유전체 연구를 착수하는 데는 적합한 유전학적 재료 및 유전체 재료가 있어야 한다. 우리는 배추 (Brassica rapa spp. pekinensis)를 재료로 하여 표준 mapping 집단을 개발하여, 78계통으로 구성된 DH집단과 약 250 계통으로 구성된 RI집단을 개발하였다. 2가지 제한효소 (HintIII, BamHI)를 이용해 세균인공염색체 (BAC) library (KBrH, KBrB)를 만들었고, 이들은 각각 56,592개와 50,688개의 클론으로 구성되어 있다. 또한 배추의 각기 다른 부위를 이용하여 만든 22가지의 cDNA library를 이용하여 평균 575bp의 길이를 가지는 104,914개의 EST 분석을 실시 하였다. 세계적으로 'Multinational Brassica Genome Project (MBGP)' 조직이 구성되었고 배추의 전 염기서열 분석을 하기로 2003년 결정되었다. 그 첫 단계로 104,914개의 BAC 클론의 BAC-end 염기서열분석이 제안되어 2006년 9월 5개국 공동 프로젝트로 추진하여 완성하게 되었다. 이러한 BAC-end 염기서열분석의 결과는 유전자의 염기서열 해석, 및 풍부하게 존재하는 반복염기서열 DNA를 분석함으로써 배추의 유전체 구조를 이해할 수 있는 실마리를 주었다. BAC 클론의 전체 염기서열분석은, 비록 단편 내에 유전자의 결실이 변화무쌍하게 일어나지만 배추 DNA 단편이 유전체에서 광범위하게 삼중복으로 존재함을 나타냈다. 이러한 BAC-end 염기서열을 아기장대 염기서열에 비교하여 629개의 종자 BAC을 선정하게 되었고, 이들의 염기서열 분석을 완성하였다. MBGP에서는2단계로서 배추의 전 유전체 염기서열 분석을 추진하게 되었고, 유전자지도에 위치한 종자 BAC을 이용하여 인접한 BAC 클론을 찾아 염기서열 분석하는 BAC-to-BAC 방법을 추진하고 있으며 8개국에서 참여하여 현재 염기서열 분석을 추진 중 이다. 최근에 각 국에서는 생물정보학기법을 활용한 염기서열 분석 기반에 대하여 많은 토론이 진행되고 있다. 앞으로 다양한 유전체 정보가 축적됨에 따라 배추의 유전체 구조를 이해하고 농업적으로 적용하고자 하는데 기여를 할 것이다.

misMM: An Integrated Pipeline for Misassembly Detection Using Genotyping-by-Sequencing and Its Validation with BAC End Library Sequences and Gene Synteny

  • Ko, Young-Joon;Kim, Jung Sun;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제15권4호
    • /
    • pp.128-135
    • /
    • 2017
  • As next-generation sequencing technologies have advanced, enormous amounts of whole-genome sequence information in various species have been released. However, it is still difficult to assemble the whole genome precisely, due to inherent limitations of short-read sequencing technologies. In particular, the complexities of plants are incomparable to those of microorganisms or animals because of whole-genome duplications, repeat insertions, and Numt insertions, etc. In this study, we describe a new method for detecting misassembly sequence regions of Brassica rapa with genotyping-by-sequencing, followed by MadMapper clustering. The misassembly candidate regions were cross-checked with BAC clone paired-ends library sequences that have been mapped to the reference genome. The results were further verified with gene synteny relations between Brassica rapa and Arabidopsis thaliana. We conclude that this method will help detect misassembly regions and be applicable to incompletely assembled reference genomes from a variety of species.

Chromosomal Information of 1,144 Korean BAC Clones

  • Park, Mi-Hyun;Lee, Hee-Jung;Kim, Kwang-Joong;Jeon, Jae-Pil;Lee, Hye-Ja;Kim, Jun-Woo;Kim, Hung-Tae;Cha, Hyo-Soung;Kim, Cheol-Hwan;Choi, Kang-Yell;Park, Chan;Oh, Berm-Seok;Kim, Ku-Chan
    • Genomics & Informatics
    • /
    • 제4권4호
    • /
    • pp.141-146
    • /
    • 2006
  • We sequenced 1,841 BAC clones by terminal sequencing, and 1,830 of these clones were characterized with regard to their human chromosomal location and gene content using Korean BAC library constructed at the Korean Science (KCGS). Sequence analyses of the 1,830 BAC clones was performed for chromosomal assignment: 1,144 clones were assigned to a single chromosome, 190 clones apparently assigned to more than one chromosome, and 496 clones to no chromosome. Evaluating gene content of the 1,144 BAC clones, we found that 706 clones represented 1,069 genes of which 415 genes existed in the BAC clones covering the full sequence of the gene, 180 genes covering a $50%{\sim}99%$, and 474 genes covering less than 50% of the gene coverage. The estimated covering size of the KBAC clones was 73,379 kilobases (kb), in total corresponding to 2.3% of haploid human genome sequence. The identified BAC clones will be a public genomic resource for mapped clones for diagnostic and functional studies by Korean scientists and investigators worldwide.

Streptomyces BAC Cloning of a Large-Sized Biosynthetic Gene Cluster of NPP B1, a Potential SARS-CoV-2 RdRp Inhibitor

  • Park, Ji-Hee;Park, Heung-Soon;Nah, Hee-Ju;Kang, Seung-Hoon;Choi, Si-Sun;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권7호
    • /
    • pp.911-917
    • /
    • 2022
  • As valuable antibiotics, microbial natural products have been in use for decades in various fields. Among them are polyene compounds including nystatin, amphotericin, and nystatin-like Pseudonocardia polyenes (NPPs). Polyene macrolides are known to possess various biological effects, such as antifungal and antiviral activities. NPP A1, which is produced by Pseudonocardia autotrophica, contains a unique disaccharide moiety in the tetraene macrolide backbone. NPP B1, with a heptane structure and improved antifungal activity, was then developed via genetic manipulation of the NPP A1 biosynthetic gene cluster (BGC). Here, we generated a Streptomyces artificial chromosomal DNA library to isolate a large-sized NPP B1 BGC. The NPP B1 BGC was successfully isolated from P. autotrophica chromosome through the construction and screening of a bacterial artificial chromosome (BAC) library, even though the isolated 140-kb BAC clone (named pNPPB1s) lacked approximately 8 kb of the right-end portion of the NPP B1 BGC. The additional introduction of the pNPPB1s as well as co-expression of the 32-kb portion including the missing 8 kb led to a 7.3-fold increase in the production level of NPP B1 in P. autotrophica. The qRT-PCR confirmed that the transcription level of NPP B1 BGC was significantly increased in the P. autotrophica strain containing two copies of the NPP B1 BGCs. Interestingly, the NPP B1 exhibited a previously unidentified SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibition activity in vitro. These results suggest that the Streptomyces BAC cloning of a large-sized, natural product BGC is a valuable approach for titer improvement and biological activity screening of natural products in actinomycetes.