본 자기공명영상장치(MRI: Magnetic Resonance Imaging)의 구성 요소인 RF Coil의 성능은 영상의 신호대 잡음비(Signal to Noise Ratio)를 결정하는 장치이다. RF Coil의 성능은 민감도(Sensitivity)와 라디오주파수 필드 균질성(RF Field Uniformity)으로 나타내고, RF Coil에 의해 유기되는 라디오 주파수 자기장(B1 Field)의 세기는 RF Coil의 구조 및 배열에 따라 공간적으로 달라진다. MRI 신호의 크기는 RF Coil이 만들어내는 자기장의 세기에 의해 결정되기 때문에 RF Coil에 의해 형성되는 공간상의 B1 Field의 분포를 확인할 수 있어야 한다. 본 논문에서는 다채널 RF Coil 설계에 있어서 가장 기본이 되는 형태의 RF Coil 구조와 이의 B1 Field 분포를 Matlab을 이용하여 모의실험을 통해 확인 하였다. Matlab을 이용하여 계산된 기본 구조의 RF 코일이 형성하는 B1 Field 분포는 다채널 RF 코일 설계시 매우 유용하게 사용될 수 있을 것이다.
음향특성이 균일하지 않는 생체조직은 특정의 형태 유지가 어렵기 때문에 종래의 극소형 수중청음기의 스캐닝 방법에 의한 초음파 음장 전파특성 측정이 곤란하다. 본 연구에서는 PVDF (Polyvinylidene fluoride) 압전막을 사용하여 2차원 배열 수중청음기를 제작하고, 그것에 의한 음장 측정 시스템을 구축한 후, 생체조직에 적용하였다. 중심주파수 2.25 ㎒이고 직경이 13㎜인 원형평면 트랜스듀서에 의한 실험 결과, 구축한 시스템에 의해 비교적 정밀한 음장 측정이 가능한 것을 알았으며, 그 주파수에 대해 소와 돼지의 간에서는 각각 0.7∼l.3dB/cm (평균; 1.0 dB/cm), 1.0∼l.8 dB/cm (평균; 1.6 dB/cm), 근육에서는 각각 0.9∼2.9 dB/cm (평균; 2.1dB/cm), 1.7∼3.3 dB/cm (평균: 2.5 dB/cm)의 값을 갖는 감쇠계수의 공간적 분포를 측정할 수 있었다.
목적 : 자기공명영상(MRI)에서 두부영상촬영을 위하여 가장 많이 사용되는 birdcage RF (Radiofrequency) 코일의 RF B1 필드가 코일 중앙부에서 endring영역으로 갈수록 줄어드는 것을 볼 수 있다. Birdcage RF 코일에서 endcap 쉴드가 코일 중앙부에서 endring영역으로 갈수록 RF B1 필드 균질성에 얼마나 영향을 주는지에 대하여 분석하였다. 대상 및 방법 : Lowpass, highpass, hybrid birdcage RF 코일들에 대해 각각 FDTD (Finite Difference Time Domain) 모의실험으로 RF B1 자속밀도 분포를 비교하였다. 모의 실험결과 RF Bl 필드가 가장 높은 조건인 highpass birdcage RF코일을 선택하여 RF코일 endring 근처에 endcap 쉴드를 적용함으로써 RF B1 균질성에 얼마나 영향이 있는 지 조사하였다. 결과 : FDTD모의실험결과 highpass birdcage RF코일은 코일 내부에서 RF B1 필드가 lowpass나 hybrid 형태의 birdcage RF 코일들 보다 우수하나 코일 중앙부에서 endring 영역까지의 균질성은 떨어졌다. 그러나 highpass birdcage RF 코일에 endcap 쉴드를 적용하면 hybrid birdcage RF 코일의 RF B1 필드와 비슷한 수준이면서 sagittal 방향의 전체적인 RF B1 균질성은 우수하였다. 결론 : 본 논문에서 제안한 방법은 임상에서 MRI자장의 세기가 커질수록 RF코일 내부의 RF B1 균질성이 현저히 떨어지는 문제점이 있는데 이를 개선하는데 적용 할 수 있다고 사료된다.
An externally applied magnetic field during heat treating the $Nd_2Fe_{14}B/Fe_3B$ based spring magnet was found to enhance the exchange coupling between the hard and soft magnetic grains. More than 30% increase in $M_r/M_s$ values for melt-spun $Nd_2Fe_{73.5}Co_3$$(Hf_{1-x}Ga_x)B_{18.5}$ (x=0, 0.5, 1) alloys was resulted from a uniform distribution of $Fe_3B, \alpha-Fe$ and $Nd_2Fe_{14}B$ phases, and also from a reduced grain size of those phases by 20%. The externally applied magnetic field induced a uniform distribution of fine grains. A study of Mossbauer effect also report that the enhancement of total magnetization of nanocomposite $Nd_2Fe_{14}B/Fe_3B$ alloys is attributed to an increased formation of $Fe_3$B after magnetic annealing.
Let (A, M) ⊂ (B, N) be commutative quasi-local rings. We consider the property that there exists a ring D such that A ⊆ D ⊂ B and the extension D ⊂ B is inert. Examples show that the number of such D may be any non-negative integer or infinite. The existence of such D does not imply M ⊆ N. Suppose henceforth that M ⊆ N. If the field extension A/M ⊆ B/N is algebraic, the existence of such D does not imply that B is integral over A (except when B has Krull dimension 0). If A/M ⊆ B/N is a minimal field extension, there exists a unique such D, necessarily given by D = A + N (but it need not be the case that N = MB). The converse fails, even if M = N and B/M is a finite field.
본 연구에서는 X-밴드 레이더에서 사용하는 9.385[GHz] 서큘레이터를 Y형 WR112 도파관속에 페라이트를 삽입하여 제작을 하였다. 페라이트 설계는 B/R(Below Resonance) 모드 방식을 사용하여, 페라이트 내부에서 전계 분포가 120도의 회전이 발생하는 조건과 페라이트의 내부의 직류 자계의 세기와 외부 자계의 세기를 계산하였다. 또한, 임피던스 정합을 포함하여 대역폭, 선택도, 삽입손실 등, 서큘레이터의 성능 향상을 위하여 두 개의 페라이트 사이에 같은 형태의 유전체를 삽입하였다. 최적의 페라이트 형태 및 유전체를 얻기 위하여 CST MWS를 이용하였다. 9.385[GHz]에서 시뮬레이션 결과는 정재파비 1.02, 분리도 -40dB, 삽입손실 0.2dB의 결과를 얻었고, 측정 결과는 정재파비 1.03, 분리도 -38dB, 삽입손실 1.2dB 이었다. 분리도, 정재파비는 시뮬레이션 결과와 잘 일치 하였지만, 삽입손실은 약 1dB 정도 크게 발생하였다.
정 자장($B_0$)의 세기가 7 T(Tesla) 또는 9.4 T 고자기장 MRI(Magnetic Resonance Imaging) 시스템은 정 자장의 세기가 1.5 T 또는 3 T MRI(Magnetic Resonance Imaging) 시스템에 비하여 인가된 RF(Radio Frequency) 필드의 높은 불균질성을 보여준다. 다채널(multi-channel) RF 코일에서는 인가된 RF 자장($B_1^+$)의 불균질성을 개선시키기 위해서 각각의 코일 소자(element)에 인가되는 전류의 크기와 위상을 독립적으로 조절할 수 있다. 선택된 관심 영역에서의 RF 자장이 균일하도록 RF 코일의 각 요소로 들어가는 최적화된 전류의 크기와 위상 값을 얻기 위해서 iterative 방법과 함께 convex 최적화 방법이 사용된다. 이러한 방법을 입증하기 위하여 9.4 T MRI 시스템에 RF 코일의 공진 주파수가 400 MHz을 가지는 다채널 전송 선로 코일이 인체 두상 모형과 함께 모델링되었으며, 이 코일에 의하여 자장이 얻어진다. 9.4 T MRI 시스템을 위한 시뮬레이션 결과가 자세히 논의된다.
Transactions on Electrical and Electronic Materials
/
제1권3호
/
pp.29-33
/
2000
The crystallographic and high frequency characteristics of $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ soft magnetic alloys were investigated under magnetic field annealing, The crystallization fraction of annealed samples with longitudinal magnetic fields is higher than that of samples without magnetic field. When the transverse magnetic field is applied, the crystallization fraction does not increases but decreases until $500^{circ}C$. It is found that for samples, the saturation induction are all same with 1.3 T. The coercive field of as-cast samples is 1.03 A/cm, but in annealed samples it decrease from 0.56 to 0.1A/cm with increasing annealing temperature from 400 to $550^{circ}C$. The squareness of annealed samples under transverse magnetic field has a small value than that of both without field and with longitudinal field annealing. It is noted that the magnetic field annealing with transverse direction to amorphous $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ profoundly influenced on the Mossbauer spectra in contrast to that with longitudinal direction and without magnetic field.
We design a crisscrossed double-layer birdcage (DLBC) coil by modifying the coil geometry of a standard single-layer BC (SLBC) coil to enhance the homogeneity of transmitting magnetic flux density ($B_1{^+}$) along the main magnetic field ($B_0$)-direction for small-animal magnetic resonance imaging (MRI) at 300 MHz. The performance assessment of the crisscrossed DLBC coil is conducted by computational analysis with the finite-difference time domain method (FDTD) and compared with SLBC coil in terms of the $B_1$ and the $B_1{^+}$ distribution. As per the computational calculation studies, the mean value in the two-dimensional $B_1{^+}$ map obtained at the mid-axial slice with the proposed DLBC coil is slightly lower than that obtained with the SLBC coil, but the $B_1{^+}$ value of the DLBC coil in the outermost plane (40 mm away from the central plane) shows improvements of 19.3% and 24.8% over the SLBC coil $B_1{^+}$ value when simulating a spherical phantom and realistic mouse body modeling. These simulation results indicate that, the $B_1{^+}$ homogeneity along the z-direction was improved by using DLBC configuration. Our approach enables $B_1{^+}$ homogeneity improvement along the zdirection, and it can also be applied to ultra-high field (UHF) MRI systems.
Purpose: Dimensions of body RF coil composed of 4 rectangular loops for low field open MRI hav been optimized. The design result shows the field inhomogeneity of B1 field below 1.5 dB in the 25 cm DSV can be achieved. Method: Our low field RF coil is composed of 4 rectangular strip loops that assumed to b located at both the bottom and top sides of permanent magnet. All the loops have identica dimensions and current amplitude. First, the inductance of a loop is calculated. Second, the current distribution on the coil strip is calculated by using finite difference time doma method (FDTD). It takes as much as 4 days in FDTD simulation for low frequency RF field That's why the electrical dipole radiation method is used for simulation. With the curren distribution obtained using the FDTD simulation, for various dimensional parameters th magnetic field has been calculated by electric dipole radiation method, where the curren elements are regarded as electric dipole radiation sources. The field pattern from electri dipole radiation is almost same as that from FDTD simulation. Also, it is same as that fro the result using the Viot-Savart equation, for far tone radiation term becomes zero and th Bl field amplitude of near one radiation is the same as the B field due to static current The field homogeneity is calculated in the 25 cm BSV.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.