• Title/Summary/Keyword: B.thuringiensis

Search Result 234, Processing Time 0.022 seconds

Identification and Characterization of a New Alkaline Thermolysin-Like Protease, BtsTLP1, from Bacillus thuringiensis Serovar Sichuansis Strain MC28

  • Zhang, Zhenghong;Hao, Helong;Tang, Zhongmei;Zou, Zhengzheng;Zhang, Keya;Xie, Zhiyong;Babe, Lilia;Goedegebuur, Frits;Gu, Xiaogang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1281-1290
    • /
    • 2015
  • Thermolysin and its homologs are a group of metalloproteases that have been widely used in both therapeutic and biotechnological applications. We here report the identification and characterization of a novel thermolysin-like protease, BtsTLP1, from insect pathogen Bacillus thuringiensis serovar Sichuansis strain MC28. BtsTLP1 is extracellularly produced in Bacillus subtilis, and the active protein was purified via successive chromatographic steps. The mature form of BtsTLP1 has a molecule mass of 35.6 kDa as determined by mass spectrometry analyses. The biochemical characterization indicates that BtsTLP1 has an apparent Km value of 1.57 mg/ml for azocasein and is active between 20℃ and 80℃. Unlike other reported neutral gram-positive thermolysin homologs with optimal pH around 7, BtsTLP1 exhibits an alkaline pH optimum around 10. The activity of BtsTLP1 is strongly inhibited by EDTA and a group of specific divalent ions, with Zn2+ and Cu2+ showing particular effects in promoting the enzyme autolysis. Furthermore, our data also indicate that BtsTLP1 has potential in cleaning applications.

Transfer of Bacillus thuringiensis toxin gene into Bacillus subtilis and its inoculation effects (식물 생장촉진 미생물의 외부 유전자 도입과 그 접종효과)

  • Rhee, Young-Hwan;Kim, Kwang-Sik;Kim, Yong-Woong;Kim, Yeong-Yil
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.361-366
    • /
    • 1992
  • The antagonistic bacteria, showing distinguished effect against Fusarium oxysporum and Rhizoctonia solani were isolated from the rhizosphares of horticultural plants and identified as Bacillus subtilis. The strains were studied for their chracteristics of biochemistry, physiology, antagonistic effect against plant pathogenic fungi, and growth promoting effect on horticultural plants. The Bacillus thuringiensis(BT) HD-1 toxin gene was introduced into these B. subtilis. The BT toxin genes on chromosome of the bacteria were identified by southern blotting, but its proteins were not detected by SDS-PAGE. These transformed bacteria showed growth promoting effect and showed also insecticidal and antagonistic effects against Bombix mori and fungi F. oxysporum and R. solani but not against nematode Bursaphelenchus xylophilus.

  • PDF

Toxigenic Bacilli Associated with Food Poisoning

  • Oh, Mi-Hwa;Cox, Julian M.
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.594-603
    • /
    • 2009
  • The genus Bacillus includes a variety of diverse bacterial species, which are widespread throughout the environment due to their ubiquitous nature. A well-known member of the genus, Bacillus cereus, is a food poisoning bacterium causing both emetic and diarrhoeal disease. Other Bacillus species, particularly B. subtilis, B. licheniformis, B. pumilus, and B. thuringiensis, have also recently been recognized as causative agents of food poisoning. However, reviews and research pertaining to bacilli have focused on B. cereus. Here, we review the literature regarding the potentially toxigenic Bacillus species and the toxins produced that are associated with food poisoning.

Basic Studies on the Development of a Microbial Pesticide Bacillus thuringiensis (Bacillus thuringiensis을 이용한 미생물 살충제에 관한 연구)

  • 이형환;김기상
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.223-231
    • /
    • 1983
  • The productions of beta-exotoxin from sixteen Bacillus thuringiensis strains were examined by Micrococus flava primarily, and then measured by spectrophotometer during culturing in Conner and Hansen mineral salts medium at 28$^{\circ}C$. Also the toxic effects of the toxin to mice were checked. The growth of Bacillus thuringiensis K2 and BTK2-T1, -T13, -T33 and -T40 got into stationary phase at 6 hour culture and then maintained it up to 48 hours without severe fluctuation. The production of beta-exotoxin from the strains, BTK2, BTK2-T1, -T13, -T17 and -T33 appeared at 6 hour culture and the amounts of the toxin were about 40 $\mu\textrm{g}$/$m\ell$ at 6 hour culture, approximately 70 $\mu\textrm{g}$/$m\ell$ at 12 hours, approximately 85$\mu\textrm{g}$/$m\ell$ from 24 hours to 48 hours. At 48 hour-culture, BTK2 produced 80 $\mu\textrm{g}$/$m\ell$ of beta-exotoxin (5.5$\times$10$^{8}$ cells/$m\ell$, BTK2-T13 produced 84 $\mu\textrm{g}$/$m\ell$ (4.3$\times$10$^{8}$ cells/$m\ell$), BTK2-T17 produced 87$\mu\textrm{g}$/$m\ell$ (1.4$\times$10$^{8}$ cells/$m\ell$), and BTK2-T33 produced 84 $\mu\textrm{g}$/$m\ell$ (4.9$\times$10$^{8}$ cells/$m\ell$). All other serotypes also produced beta-exotoxin. At 48 hour culture, BTK-37 produced 88$\mu\textrm{g}$/$m\ell$ (6.1$\times$10$^{8}$ cells/$m\ell$), BTK-35 produced 81 $\mu\textrm{g}$/$m\ell$), and the rest of them produced less than 70 $\mu\textrm{g}$/$m\ell$. To check the toxicity of beta-exotoxin and B. thuringiensis, the cultured media with microorganisms were inoculated to mice by per os, intraperiloneal, subcutaneous and intracerebral injection, and nasal cavity inoculation for 30 days. However, the toxin did not kill all of the treated mice.

  • PDF

A Study on the Development of a Microbial Insecticide (미생물 살충제의 개발에 관한 연구)

  • Lee, Jae-Koo;Kim, Kyo-Chang
    • Applied Biological Chemistry
    • /
    • v.19 no.4
    • /
    • pp.189-201
    • /
    • 1976
  • In an effort to develop a microbial in secticide, B. thdringiensis var. thuringiensis was cultured in the medium composed of cocoon-cooked water from a filature. The results obtained are summarized as followss : (1) Bacillus thuringiensis is a bacterium producing a ${\delta}-endotoxin$ especially toxic to lepidopterous insects and a thermostable exotoxin harmful to dipterous insects. (2) With a view to utilizing the cocoon-cooked water discarded from the filature, as a nutrient source in the B. thuingiensis culture, it was analyzed to contain large amounts of various minerals and protein (7.5 mg/ml) believed to be extracted from the pupae. (3) A large amount of the ${\delta}-endotoxin$ can be obtained most cheeply by using cocoon-cooked water instead of distilled water in preparing GYS and citrate salts media. (4) The largest amount of a mixture of the vegetative cells, spores, and crystals was obtained by addition of 8 gr/l of glucose to the GYS medium. (5) The growth of the bacterium was far better, when leucine, isoleucine, and valine were added all together to the citrate salts medium to the concentration of $1.25{\times}10^{-3}M$. (6) The best growth was observed by addition of Na-glutamate to the citrate salts medium to the concentration of $2.5{\times}10^{-3}M$. (7) The optimal culture time ranged from 9 to 15 days. (8) The highest mortality was shown in Pieris rapae Linne with a pH of the total body extract of 8.4, whereas Dendrolimus spectabilis Butler and Bombyx mori Linne with lower pH's were less susceptible to the ${\delta}-endotoxin$. (9) The presence of the thermo stable exotoxin was confirmed by the fact that the supernatant of the culture was very toxic to the Drosophila melanogaster tested.

  • PDF

The Toxin Purification and Isolation Identification of Meloidogyne hapla Toxicity Bacteria (Meloidogyne hapla 독성세균의 분리 동정 및 독성물질의 정제)

  • 이광배
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.32-39
    • /
    • 1999
  • The following is experimental result of selecting soil bacteria showing toxicity against Root-knot nematode (Meloidogyne hapla). Out of 286 strains isolated from soil, one(NC67) showing toxicity against M.hapla is selected The selected strain(NC67) is identified of B. thuringiensis subsp. indiana. It proved out that the toxic maerial against M. hapla produce by NC67 strain is an exotoxin. The result of examining the existence of the extercellular toxicity product by the toxic strain(NC67) by usign activated carbon column chromatography, Dowex 50W column chromatography and TLC of silical gel etc. proved out that it is a single material.

  • PDF

Selection of Crop Protectant for Friendly Environmental Control of Spodopfera exigua (Lepidoptera: Noctuidae) (파밤나방(Spodoptera exigua)의 환경친화적 방제를 위한 작물보호제의 선발)

  • Jin, Da-Yong;Cho, Min-Su;Choi, Su-Yeon;Paek, Seung-Kyoung;Kim, Jin-Su;Youn, Young-Nam;Hwang, In-Cheon;Yu, Yong-Man
    • Korean journal of applied entomology
    • /
    • v.47 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • For the development of friendly environmental control of the beet armyworm, Spodoptera exigua that is too hard to control in the field, 25 insecticides were chosen from 58 registered to the beet armyworm, and bioassayed. There are 12 insecticides with neurotoxical activities, 10 with insect growth regulators and 3 Bacillus thuringiensis products. Among 12 insecticides with neurotoxical activities, mortality of S. exigua was 100% with emamectin benzoate (EC) and indoxacarb (WP) within 3 and 5 days after application, respectively. Otherwise, WG and SC of indoxacarb, Indoxacarb + etofenprox (WP) and pyridalyl (EW) were showed up to 91 %. Methoxyfenozide + spinosad (SC) was better than any other insect growth regulator as 100% mortality within 3 days after application. And methoxyfenozide (WP), tebufenozide (WP) and methoxyfenozide (SC) were 92% by 5 days. However, 3 kinds of B. thuringiensis products were showed under 35% mortality within 5 days from first spray.

Characterization of Microbial Pathogen Bacillus thuringiensis Isolates from Soil Against Mosquito and Silkworm Larvae (II) (토양에서 분리한 살충성 Bacillus thuringiensis의 모기와 누에 유충에 대한 독성효과 (II))

  • Lee, Hyung-Hoan;Yoo, Bo-Rim;Kim, Young-Joo;Won, Nam-Hi;Kim, Hak-Chun
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.17-21
    • /
    • 1993
  • Eight strains of Bacillus thuringiensis were isolated from soil in Korea and characterized. The isolates were named HL-24, HL-25, HL-33, HL-34, HL-35, HL-38, HL-39, HL-40. Strains HL-24 and HL-25 produced irregular parasporal crystals, HL-33 and HL-35 produced bipyramidal crystals, and others were round form in their cells. The biochemical characteristics of the eight isolates were only minor different in specific characteristics to the known serotypes of Bacillus thuringiensis. The HL-25, HL-33 and HL-34 strains showed resistances to cephalothin, colistin and penicillin G, and HL-39 and HL-40 strains were resistant to penicilin G. The strains of HL-24, HL-25, HL-33 and HL-34 were toxic to Bombyx mori lavae and HL-24, HL-25, HL-38, HL-39 and HL-40 strains killed Culex pipiens 3rd instar larvae. The HL-24 and H25 strains showed lethal activity against two kinds of the larvae, however lethality against mosquito larvae was low.

  • PDF