• 제목/요약/키워드: B.thuringiensis

검색결과 234건 처리시간 0.026초

대파 재배지 파좀나방(Acrolepiopsis sapporensis) 발생 현황과 '비티플러스' 처리 효과 (Occurrence of the Onion Moth, Acrolepiopsis sapporensis, in the Welsh Onion Farms and its Treatment Using 'BtPlus')

  • 엠디따핌호사인흐리틱;진가현;김용균
    • 한국응용곤충학회지
    • /
    • 제62권4호
    • /
    • pp.277-285
    • /
    • 2023
  • 대파(Allium fistulosum) 정식부터 수확기까지 성페로몬을 이용하여 재배지에 발생한 파좀나방(Acrolepiopsis sapporensis)을 모니터링하였다. 이 시기에 발생한 파좀나방은 월동세대 이후 6월 초와 7월 말에 각각 발생 최성기를 보였다. 그러나 발생량은 연도와 재배 환경에 따라 다르게 나타났다. 파좀나방을 효과적으로 방제하기 위한 미생물제제로서 Bacillus thuringiensis 균주를 스크리닝하였고, 이들 가운데 B. thuringiensis kurstaki (BtK)가 선발되었다. 선발된 BtK의 살충력을 높이기 위해 다른 곤충병원세균인 Photorhabdus temperata temperata (Ptt) 세균 배양액 추출물을 추가하였다. 이들 두 세균을 혼합한 '비티플러스'는 BtK 단독 보다 현격하게 높은 살충력을 나타냈다. 이러한 살충력 제고 원인은 Ptt 추출물에 포함된 대사물질에 의해 기인되었다. 이들 대사물질은 파좀나방의 세포성 및 체액성 면역반응을 억제하여 BtK의 살충력을 제고시킨 것으로 나타났다. 이상의 결과는 국내 대파 재배지에서 파좀나방이 지속적으로 발생하며, 이 해충에 의한 경제적 피해를 줄이기 위한 비티플러스의 효과적 방제 가능성을 제시하였다.

농약 사용 저감화를 위한 환경 친화적인 파밤나방(Spodoptera exigua)의 방제 (Environment-Friendly Control of Beet Armyworm, Spodoptera exigua (Noctuidae: Lepidoptera) to Reduce Insecticide Use)

  • 김대용;백승경;김진수;최수연;박찬;김태환;진나영;정선영;윤영남;유용만
    • 한국응용곤충학회지
    • /
    • 제48권2호
    • /
    • pp.253-261
    • /
    • 2009
  • 파밭에서 발생하는 파밤나방을 친환경적으로 방제하기 위하여 농약저감화 방법중의 하나인 교호방제법을 검토하였다. 파밤나방에 등록되어 있는 살충제 가운데서 시판중인 25개 품목을 구입하여 실내실험에서 약효가 우수한 9종을 선발하여 비닐하우스내의 소포장 시험을 통해 화학 살충제 4종을 선발하였으며, 본 실험실에서 선발한 3종의 BT제의 교호처리를 포장시험에 적용하였다. 처리방법은 같은 약제를 1주일 간격으로 3회 처리한 단일처리와 BT제를 포함하여 서로 다른 약제를 1회씩 3종류를 1주일 간격으로 교호처리 하였다. 그 결과 화학농약과 미생물 농약을 처리한 Indoxacarb WP - Chlorfluazuron EC - B.t. var. kurstaki CAB141과 Indoxacarb WP - Methoxyfenozide + spinosad SC - Chlorfluazuron EC - B.t. var. aizawai CAB109, B.t. var. kurstaki CAB141의 3합이 평균 살충율 78%이상을 나타냈다. 따라서 단일처리의 방제가보다 10% 이상 높았으며 평균피해감소율 43% 이상에 달하여 단일처리한 조합보다 10% 높은 효과를 나타났다. 이와 같은 결과는, 동일한 약제 살포에 의한 저항성발달을 최소화하고, 천연물이나 미생물을 이용한 생물농약을 교호처리함으로서 화학농약의 살포 횟수를 감소시켜 친환경적으로 파밤나방을 방제할 수 있을 것으로 사료된다.

국내 농작물의 근부토양에서 분리한 Pseudomonas 내에서의 Bacillus thuringiensis 독소단백질 유전자의 발현 (Expression of the Bacillus thuringiensis Crystal Protein Gene in Pseudomonas Isolated from Rhizosphere Soil of Korean Crops)

  • Tag, Koo-Bon;Shin, Byung-Sik;Park, Seung-Hwan;Park, Ho-Yong;Kim, Jeong-Il
    • 한국미생물·생명공학회지
    • /
    • 제17권4호
    • /
    • pp.295-300
    • /
    • 1989
  • B. thuringiensis가 생산하는 살충성 독소 단백질의 생태학적 응용방법을 개발하기 위한 목적으로 우선 독소 단백질 유전자를 옮겨 발현시키기에 적합한 숙주 미생물의 분리작업을 수행하였다. 국내 주요농산물인 고추, 감자, 무우 등 7가지 농작물의 뿌리부근에 군락을 형성하는 35종의 형광성Pseudomonas들을 분리하였고 독소 단백질 유전자를 함유하는 재조합 plasmid에 대한 숙주로서의 이응가능성을 검토해 보기 위하여 분리균주 35주에 대한 형질전환을 실시한 결과 4주에 독소 단백질 유전자의 도입이 가능하였고 생물검정과 면역학적인 방법 등에 의한 결과 BT 독소 유전자의 발현을 확인하였다.

  • PDF

Enzymatic Production of High Molecular Weight Chitooligosaccharides Using Recombinant Chitosanase from Bacillus thuringiensis BMB171

  • Kang, Lixin;Jiang, Sijing;Ma, Lixin
    • 한국미생물·생명공학회지
    • /
    • 제46권1호
    • /
    • pp.45-50
    • /
    • 2018
  • The chitosanase gene (btbchito) of Bacillus thuringiensis BMB171 was cloned and heterologously expressed in the yeast Pichia pastoris. After purification, about 300 mg of recombinant chitosanase was obtained from the 1-1 culture medium with a specific activity of 240 units/mg. Results determined by the combined use of thin layer chromatography (TLC) and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) showed that the chitooligosaccharides (COSs) obtained by chitosan (N-deacetylated by 70%, 80%, and 90%) hydrolysis by rBTBCHITO were comprised of oligomers, with degrees of polymerization (DP) mainly ranging from trimers to heptamers; high molecular weight chitopentaose, chitohexaose, and chitoheptaose were also produced. Hydrolysis products was also deduced using MS since the COSs (n) are complex oligosaccharides with various acetyl groups from one to two, so the non-acetyl COSs (GlcN)n and COSs with more acetyls (> 2) were not detected. The employment of this method in the production of high molecular weight COSs may be useful for various industrial and biological applications, and the activity of chitosanase has great significance in research and other applications.

Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus thuringiensis RUN1

  • Olukanni, O.D.;Osuntoki, A.A.;Awotula, A.O.;Kalyani, D.C.;Gbenle, G.O.;Govindwar, S.P.
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권6호
    • /
    • pp.843-849
    • /
    • 2013
  • A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2-(1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.

Immunological Analysis of Antigenic Variation of Bacillus thuringiensis subsp. sotto during Sporulation and Crystallization

  • Cho, Jae Min;Gi Bum Nam;Soon Bok Hong;Myung Hwan Cho
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권6호
    • /
    • pp.359-363
    • /
    • 1995
  • The antigenic variation of B. thuringiensis subsp. satto have been investigated for 120 hours during sporulation and crystallization by using SDS-PAGE and Western blot. Most antigens of a vegetative cell were found to disappear as it was in sporulation and crystallization, but protein antigens of 46, 29, 27, and 21 kDa continued to be expressed. The new protein bands of 293, 138, 119, 75, and 68 kDa appeared on days 2 through 5 in modified GYS medium. They were thought to be involved in sporulation and crystallization. The protein of 138 kDa was found to be a major protein of both crystal and spore. The expression patterns were immunologically analyzed by Western blot. The polyclonal antisera against the intact crystal showed strong immunoreactivity to proteins with molecular masses of 293, 138, 68, and 46 kDa. The polyclonal antisera against the spore recognized proteins of 293, 138, 68, and 46 kDa. Both crystals and spores appeared to express the common protein antigens.

  • PDF

Generation of a Specific Marker to Discriminate Bacillus anthracis from Other Bacteria of the Bacillus cereus Group

  • Kim, Hyoung-Tai;Seo, Gwi-Moon;Jung, Kyoung-Hwa;Kim, Seong-Joo;Kim, Jee-Cheon;Oh, Kwang-Geun;Koo, Bon-Sung;Chai, Young-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.806-811
    • /
    • 2007
  • Bacillus anthracis is a soil pathogen capable of causing anthrax that is closely related to several environmental species, including B. cereus, B. mycoides, and B. thuringiensis. DNA homology studies showed that B. anthracis, B. cereus, B. mycoides, and B. thuringiensis are closely related, with a high sequence homology. To establish a method to specifically detect B. anthracis in situations such as environmental contamination, we initially performed RAPD-PCR with a 10-mer random primer and confirmed the presence of specific PCR bands only in B. anthracis species. One region specific for B. anthracis was cloned and sequenced, and an internal primer set was designed to amplify a 241-bp DNA fragment within the sequenced region. The PCR system involving these specific primer sets has practical applications. Using lyses methods to prepare the samples for PCR, it was possible to quickly amplify the 241-bp DNA segment from samples containing only a few bacteria. Thus, the PCR detection method developed in this study is expected to facilitate the monitoring of environmental B. anthracis contamination.

Comparing the mortality of Protaetia brevitarsis seulensis (Coleoptera: Cetoniidae) caused by entomopathogenic bacteria and Serratia marcescens (Enterobacteriales: Enterobacteriaceae)

  • Kwak, Kyu Won;Han, Myung Sae;Nam, Sung Hee;Choi, Ji Young;Lee, Seok Hyun;Kim, Hong Geun;Park, Kwan Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제30권2호
    • /
    • pp.40-44
    • /
    • 2015
  • To investigate whether Serratia marcescens (Enterobacteriales: Enterobacteriaceae) isolated from Protaetia brevitarsis seulensis (Coleoptera: Cetoniidae) acts as an opportunistic bacterium in peroral infection, the primary entomopathogenic bacteria Bacillus thuringiensis (Bacillales: Bacillaceae) and Paenibacillus popilliae (Eubacteriales: Bacillaceae) were added to sawdust to perform a bioassay experiment. We found that peroral infection caused by S. marcescens could be fatal beyond a concentration of $4{\times}10^8pfu/mL$ in $2^{nd}$ stage P. b. seulensis larvae and at $6{\times}10^8pfu/mL$ in $3^{rd}$ stage P. b. seulensis larvae. In particular, mortality resulting from a combination of P. popilliae and S. marcescens was markedly increased in $2^{nd}$ stage P. b. seulensis larvae. Therefore, we confirmed that mortality was increased when S. marcescens was infected together with other entomopathogenic bacteria, and that peroral infection itself can be fatal beyond certain concentrations.

Construction of Modified Bacillus thuringiensis cry1Ac Genes for Transgenic Crop Through Multi Site-directed Mutagenesis

  • Xu, Hong Guang;Roh, Jong-Yul;Wang, Yong;Choi, Jae-Young;Shim, Hee-Jin;Liu, Qin;Tao, Xueying;Woo, Soo-Dong;Jin, Byung-Rae;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제19권1호
    • /
    • pp.199-204
    • /
    • 2009
  • The newly cloned Bacillus thuringiensis cry1-5 gene showed high activity to both Plutella xylostella and Spodoptera exigua, while cry1Ac only showed high activity against P. xylostella but low to S. exigua. Through the alignment of amino acid sequences between Cry1Ac and Cry1-5, we found 12 different residues in domain I (6 residues) and domain II (6 residues). In this study, the modified cry1Ac gene, which is constructed according to a crop-preferring codon usage, was used as a template to construct mutant B. thuringiensis cry1Ac genes based on cry1-5 gene through multi site-directed mutagenesis. Total 63 various mutant cry genes were obtained at 12 positions randomly. Among them, ten mutant cry genes, whose domain I was totally converted and domain II was randomly, were selected to express in baculovirus expression system as a polyhedrin fusion form. The recombinant proteins were 95 kDa in size and were stably activated as 65 kDa by trypsin. The expressed mutant Cry proteins were applied to bioassays against P. xylostella and S. exigua. All mutants showed high insecticidal activity both to P. xylostella and S. exigua similar to cry1-5. These results suggest that these mutant cry genes might be expected of desirable cry genes for introduction to transgenic crops.

Construction of a Baculovirus Hyphantria cunea NPV Insecticide Containing the Insecticidal Protein Gene of Bacillus thuringiensis subsp. kurstaki HD1

  • Lee, Hyung-Hoan;Moon, Eui-Sik;Lee, Sung-Tae;Hwang, Sung-Hei;Cha, Soung-Chul;Yoo, Kwan-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.685-691
    • /
    • 1998
  • Baculovirus Hyphantrin. cunea nuclear polyhedrosis virus (HcNPV) insecticide containing the insecticidal protein (ICP) gene from Bacillus thuringiensis subsp. kurstaki HD1 was constructed using a lacZ-HcNPV system. The ICP ($\delta$-endotoxin) gene was placed under the control of the polyhedrin gene promoter of the HcNPV. A polyhedrin-negative virus was derived and named ICP-HcNPV insecticide. Then, the insertion of the ICP gene in the ICP-HcNPV genome was confirmed by Southern hybridization analysis. Polyacrylamide gel electrophoresis (PAGE) analysis of the Spodoptera frugiperda cell extracts infected with the ICP-HcNPV showed that the ICP was expressed in the insect cells as 130 kDa at 5 days post-infection. The ICP produced in the cells was present in aggregates. When extracts from the cells infected with the ICP-HcNPV were fed to 20 Bombyx mori larvae, the following mortality rate was seen; 8 larvae at 1 h, 10 larvae at 3 h, and 20 larvae at 12 h. These data indicate that the B. thuringiensis ICP gene was expressed by the baculovirus insecticide in insect cells and there was a high insecticidal activity. The biological activities of the recombinant virus ICP-HcNPV were assessed in conventional bioassay tests by feeding virus particles and ICP to the insect larvae. The initial baculovirus insecticide ICP-HcNPV was developed in our laboratory and the significance of the genetically engineered virus insecticides is discussed.

  • PDF