• Title/Summary/Keyword: B.t. H-14

Search Result 394, Processing Time 0.02 seconds

Performance Measurements of Positron Emission Tomography: An Investigation Using General Electric $Advance^{TM}$ (양전자방출단층촬영기의 표준 성능평가 방법: GE $Advance^{TM}$에 적용한 예)

  • Lee, J.R.;Choi, Y.;Choe, Y.S.;Lee, K.H.;Kim, S.E.;Shin, S.A.;Kim, B.T.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.548-559
    • /
    • 1996
  • A series of performance measurements of positron emission tomography (PET) were performed following the recommendations of the Computer and Instrumentation Council of the Society of Nuclear Medicine and the National Electrical Manufacturers Association. We investigated the performance of the General Electric $Advance^{TM}$ PET. The measurements include the basic intrinsic tests of spatial resolution, scatter fraction, sensitivity, and count rate losses and randoms. They also include the tests of the accuracy of corrections: count rate linearity correction, uniformity correction, scatter correction and attenuation correction. GE $Advance^{TM}$ PET has bismuth germanate oxide crystals (4.0mm transaxial ${\times}$ 8.1mm axial ${\times}$ 30.0mm radial) in 18 rings, which form 35 imaging planes spaced by 4.25mm. The system has retractable tungsten septa 1mm thick and 12cm long. Transaxial resolution was 4.92mm FWHM in 2D and 5.14mm FWHM in 3D at the center. Average axial resolution in 2D decreased from 3.91mm FWHM at the center to 6.49mm FWHM at R=20cm. Average scatter fraction of direct and cross slices was 9.57%. Dead-time losses of 50% corresponded to a radioactivity concentration of $4.86{\mu}Ci/cc$ and a true count rate of 519 kcps in 2D. The accuracy of count rate linearity correction was 1.84% at the activity of $4.50{\mu}Ci/cc$. Non-uniformity was 2.06% in 2D and 2.93% in 3D. Remnant errors after scatter correction were 0.55% in 2D and 4.12% in 3D. The errors of attenuation correction were 6.21% (air), 0.20% (water), -6.32% (teflon) in 2D and 5.00% (air), 6.94% (water), 3.01% (teflon) in 3D. The results indicate the performance of GE $Advance^{TM}$ PET scanner to be well suited for clinical and research applications.

  • PDF

Nitrogen Partitioning at Low Temperature in Fall-Sowing Species II. Distribution to roots, xylem and phloem transport of newly absorbed nitrate (추파 청예작물의 저온 조건하에서 질소의 분배에 관한 연구 II. 흡수된 질산태 질소의 목부, 체관부 및 뿌리로의 전이)

  • Kim, T.H.;Kim, B.H.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.1
    • /
    • pp.49-56
    • /
    • 1999
  • With ${15}^N$ labeling under split roots system of winter rye (Secale cereale L.) and forage rape (Brassica napus L.) grown at $5^{\circ}C$ and $25^{\circ}C$, the N flows were respectively quantified to investigate the transport of newly absorbed nitrate-N in whole plant level at low temperature. Comparing with $25^{\circ}C$ culture condition, the total absorbed nitrate-N content at $5^{\circ}C$ decreased to 59.3% and 27.1% in winter rye and forage rape during 9 days. About 2.5% and 7.6 % of nitrate-N were transported into roots, respectively, in winter rye and in forage rape at $25^{\circ}C$. These proportions increased at $5^{\circ}C$ to 3.8% and 10.9%, respectively. Total N contents transferred by xylem in winter rye grown and forage rape grown at $25^{\circ}C$ during were 55.9 and 54.4 mg N/plant, respectively. xylem flows at $5^{\circ}C$ were 60.4% and 28.8% lower than at $25^{\circ}C$ for winter rye and forage rape. These valves represented that averagely 96.8 % and 90.8% of total absorbed nitrate-N were transferred to leaves in winter rye and forage rape during 9 days. Phloem flows were the smallest among other N flows and were much less influenced by temperature treatment for two species examined. About 2.5% and 0.5% of absorbed N were recycled into roots by phloem transport at $25^{\circ}C$, respectively, for winter rye and forage rape. These proportions increased to 5.2% and 0.9% at $5^{\circ}C$.

  • PDF

Effects of Dietary Protein Level on Velvet Antler Production in Red Deer(Cervus elaphus) (사료의 단백질 수준이 Red Deer(Cervus elaphus)의 녹용생산에 미치는 영향)

  • Jeon, B.T.;Moon, S.H.;Hudson, R.J.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.577-584
    • /
    • 2003
  • Three dietary treatments were compared over two years to determine the effects of dietary protein levels and feeding patterns on velvet production in red deer (Cervus elaphus). The LL group received a 13% protein diet whereas the HH group received a 19% protein diet. The LH group switched from the low to high protein diet at the time of antler casting. Significant relationships were found between velvet production and the girth and length of main beam (p<0.01), daily growth rate of velvet (p<0.01), body weight at cutting time (p<0.05 in 1998 and p<0.01 in 1999), date of casting (p<0.01), and body weight and velvet production of the previous year (p<0.05 in 1998 and p<0.01 in 1999). Different levels of protein in diets in this study did not show statistically significant different effects in general. The girth of velvet, summed for top, middle and bottom of the main beam, tended to be thickest in HH for two years and thinnest in LL for 1998 and in LH for 1999. The main beam tended to be longest in HH at 46.3cm in 1998 and 45.2cm in 1999 and shortest in LH at 39.9cm in 1998 and 41.5cm in 1999. Velvet fresh weight tended to be highest in HH at 2,600$\pm$1,000g in 1998 and 3,038$\pm$867g in 1999 and lowest in LH at 2,287$\pm$826g in 1998 and 2,739$\pm$1,079g in 1999. Daily growth rate of velvet antler tended to be greatest in HH (43$\pm$16g/day in 1998 and 51$\pm$14g/day in 1999) and least in LH (38$\pm$15g/day in 1998 and 45$\pm$18g/day in 1999).

Effects of Matrix Metalloproteinase Inhibitor on Ventilator-Induced Lung Injury in Rats (기계환기로 인한 백서의 급성 폐손상에서 Matrix Metalloproteinase Inhibitor의 효과)

  • Kim, Je-Hyeong;Park, Soo-Yeon;Hur, Gyu-Young;Lee, Seung-Heon;Lee, Sang-Yeub;Park, Sang-Myeon;Suh, In-Bum;Shin, Chol;Shim, Jae-Jeong;In, Kwang-Ho;Kang, Kyung-Ho;Yoo, Se-Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.6
    • /
    • pp.619-634
    • /
    • 2002
  • Background : Many inflammatory mediators and collagenases are involved in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). The increase of matrix metalloproteinase-9 (MMP-9, gelatinase-B) produced mainly by inflammatory cells was reported in many ALI models and connective tissue cells. In this study, the expression of MMP-9 in ventilator-induced lung injury (VILI) model and the effects of matrix metalloproteinase inhibitor (MMPI) on VILI were investigated. Methods : Eighteen Sprague-Dawley rats were divided into three groups: low tidal Volume (LVT, 7mL/Kg tidal volume, 3 $cmH_2O$ PEEP, 40/min), high tidal volume (HVT, 30mL/Kg tidal volume, no PEEP, 40/min) and high tidal volume with MMPI (HVT+MMPI) groups. Mechanical ventilation was performed in room air for 2 hours. The 20 mg/Kg of CMT-3 (chemically modified tetracycline-3, 6-demethyl 6-deoxy 4-dedimethylamino tetracycline) was gavaged as MMPI from three days before mechanical ventilation. The degree of lung injury was measured with wet-to-dry weight ratio and acute lung injury score. Expression of MMP-9 was studied by immunohistochemical stain with a mouse monoclonal anti-rat MMP-9 $IgG_1$. Results : In the LVT, HVT and HVT+MMPI groups, the wet-to-dry weight ratio was $4.70{\pm}0.14$, $6.82{\pm}1.28$ and $4.92{\pm}0.98$, respectively. In the HVT group, the ratio was significantly higher than other groups (p<0.05). Acute lung injury score measured by five-point scale was $3.25{\pm}1.17$, $12.83{\pm}1.17$ and $4.67{\pm}0.52$, respectively. The HVT group was significantly damaged by VILI and MMPI protects injuries by mechanical ventilation (p<0.05). Expression of MMP-9 measured by four-point scale was $3.33{\pm}2.07$, $12.17{\pm}2.79$ and $3.60{\pm}1.95$, respectively, which were significantly higher in the HVT group (p<0.05). Conclusion : VILI increases significantly the expression of MMP-9 and MMPI prevents lung injury induced by mechanical ventilation through the inhibition of MMP-9.