• Title/Summary/Keyword: B.subtilis

Search Result 1,110, Processing Time 0.033 seconds

Effects of Soybean and DJI Chungkukjang Powder on Blood Glucose and Serum Lipid Reduction in db/db Mice (대두 및 DJI 청국장 분말이 db/db 마우스의 혈당과 혈청 지질 감소에 미치는 영향)

  • Lee, Jae-Joon;Kim, Ah-Ra;Chang, Hae-Choon;Jung, Hae-Ok;Lee, Myung-Yul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1086-1093
    • /
    • 2012
  • The hypoglycemic and hypolipidemic effects of autoclaved soy flour and DJI chungkukjang powder fermented using Bacillus subtilis DJI were investigated in type 2 diabetic animal models. After a 2-week adaptation period, the diabetic animal model db/db mice were divided into the diabetic control group (D-C group), a diabetic group fed with soybean (D-S group), and a diabetic group fed with DJI chungkukjang (D-CJ group). The body weight gain, food intake, water intake, liver, and adipose tissue weights were not significantly different between the experimental groups. The supplementation of DJI chungkukjang or autoclaved soy flour diet induced a marked reduction of fasting blood glucose, blood glycosylated hemoglobin levels, and glucose levels in the oral glucose tolerance test and AUC for glucose compared with the diabetic control group. However, DJI chungkukjang showed a much stronger antidiabetic effect than unfermented autoclaved soy flour. Serum insulin levels were the same among the groups. The supplementation of DJI chungkukjang or autoclaved soy flour diet also significantly lowered the serum triglyceride, total cholesterol, and LDL-cholesterol levels compared with the control diabetic group, while it elevated the HDL-cholesterol level in the serum. This data suggests that the dietary supplementation of autoclaved soy flour or DJI chungkukjang may be useful in the control of blood glucose in animals with type 2 diabetes.

Studies on the Synthesis of Mannich Bases of Hexachlorophene and their Antimicrobial Activities (Hexachlorophene의 Mannich Bases 합성 및 항미생물작용에 관한 연구)

  • Kim, Jong-Ho;Bae, Moo;Lee, Gye-Jun
    • Microbiology and Biotechnology Letters
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 1973
  • Thirty-three Mannich bases of 2,2'-methylene bis (3,4, 6-trichlorophenoxy-acetic acid) were synthesized hexachlorophene as potential antimicrobial agents and tested against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Trichophyton rubrum, Microsporum gypseum, Epidermophyton floccosum, Aspergillus niger and Aspergillus oryzae in vitro. It was found that: 1) 2,2'-Methylene bis [${\alpha}$-(3, 4, 6-trichlorophenoxy)-${\beta}$- (N,N -diethylamino) propionic acid] and 2,2'-methylene bis [${\alpha}$-(3,4,6-trichlorophenoxy)-${\beta}$-(N, N-dimethynlamo) propionoic acid] were active against Staphylococcus aureus and Bacillus subtilis at the concn. of 1 $\mu\textrm{g}$/$m\ell$ respectively; 2) 2,2'-Methylene bis [${\alpha}$-(3,4,6-trichlorophenoxy)-${\beta}$-(m-hydroxy-p-carboxyphenylamino) propionic acid] and 2,2'-methylene bis [${\alpha}$-(3, 4, 6-trichlorophenoxy)-${\beta}$-(cyclohexylamino) propionic acid] were active against Trichophyton-rubrum at the concn. of 2 $\mu\textrm{g}$/$m\ell$ respectively; 3) 2,2'-Methylene bis [${\alpha}$-3,4,6-trichlorophenoxy)-${\beta}$-(m-hydroxy-p-carboxyphenyl-amino) propionic acid] and 2,2'-methylene bis [${\alpha}$-(3,4,6-trcihlorophenoxy)-${\beta}$-(piperidino) propionic acid] were active against Microsporum gypseum at the concn. of 2 $\mu\textrm{g}$/$m\ell$ respectively; 4) 2,2'-Methylene bis [${\alpha}$-(3,4,6-trichlorophenoxy)-${\beta}$-(m-hydroxyphenylamino) propionic acid], 2,2'-methylene bis [${\alpha}$-(3, 4,6-trichlorophenoxy)-${\beta}$-(m-hydroxy-p-carboxy phenylamino) propionic acid], 2,2'-methylene bis [${\alpha}$-(3,4,6-trichlorophenoxy)-${\beta}$-(o-chlorophenylamino) propionic acid], 2,2'-methylene bis [${\alpha}$-(3,4,6-trichlorophenoxy)-${\beta}$-(o-chloro-p-nitrophenylamino) propionic acid], 2,2'-methylene bis [${\alpha}$- (3,4,6-trichlorophenoxy)-${\beta}$-(methylamino) propionic acid], 2,2'-methylene bis [${\alpha}$-(3,4,6-trichlorophenoxy)-${\beta}$-(hydroxylamino) propionic acid], 2,2'-methylene bis [${\alpha}$-(3,4,6-trichlorophenoxy)-${\beta}$-(cyclohexylamino) propionic acid], 2,2'-methylene bis [${\alpha}$-(3,4,6-trichlorphenoxy)-${\beta}$-(morpholino) propionic acid], 2,2'-methylene bis [${\alpha}$-(3,4,6-trichlorophenoxy)-${\beta}$-(p-sulfophenylamino) propionic acid] and 2,2'-methylene bis [${\alpha}$-(3,4,6-trichlorophenoxy)-${\beta}$-(4-sulfu-l-nayphthlamino) aoi!c rppioncd (were active against Epidermophyton floccosum at the concn. of 1 $\mu\textrm{g}$/$m\ell$ respectively; 5) 2,2'-Methlene bis [${\alpha}$-(3,4,6-trichlorophenoxy)-${\beta}$-(m-hydroxyphenylamino) propionic acid], 2,2'-methylene bis (a-(3,4,6-trichlorophenoxy)-${\beta}$-(m-hydroxy-p-carboxyphenylamino) propionic acid], 2,2'-methylene bis [${\alpha}$-(3,4,6-trichlorophenoxy)-${\beta}$-(p-methylphenylamino) propionic acid] and 2,2'-methylene bis [${\alpha}$-(3,4,6-trichlorophenoxy)-${\beta}$-(hydroxylamino) propionic acid] were active against Aspergillus niger and Aspergillus oryzae at the concn. of 1 $\mu\textrm{g}$/$m\ell$ respectively.

  • PDF

Evaluation of Anti-oxidant, Anti-microbial and Anti-thrombosis Activities of Fruit, Seed and Pomace of Schizandra chinensis Baillon (오미자 열매, 씨, 착즙 후 박의 항산화, 항균 및 항혈전 활성 평가)

  • Kim, Mi-Sun;Sung, Hwa-Jung;Park, Jong-Yi;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.131-138
    • /
    • 2017
  • In this study, for the efficient use of the byproduct of the omija (Schizandra chinensis Baillon: SC) processing industry, the ethanol extracts of the fruit (F), seed (S), and pomace (P) of SC were prepared, and their useful bioactivities were evaluated. For F-SC, S-SC, and P-SC, the extraction yields were 28.3%, 22.1%, and 7.2%, respectively, and the polyphenol contents were 8.81, 37.22, and 9.20 mg/g, respectively. The total flavonoid content in P-SC (4.31 mg/g) was 3.5-fold higher than that in F-SC (0.76 mg/g). In an antioxidation activity assay, P-SC showed stronger radical scavenging activities against DPPH anion, ABTS cation, and nitrite and stronger reducing power activities than the other extracts. The calculated concentration required for 50% radical scavenging activity, $RC_{50}s$, of P-SC for DPPH anion, ABTS cation, and nitrite was 226.2, 192.5, and $92.5{\mu}g/ml$, respectively. In an antimicrobial activity assay, F-SC, S-SC, and P-SC showed similarly strong growth inhibitions against Bacillus subtilis and P. vulgaris at a concentration of 0.5 mg/disc. F-SC and P-SC showed 15-fold extended time in thrombin, prothrombin, and activated partial thromboplastin time assays at a concentration of 5 mg/ml. The anticoagulation activity of P-SC (2.5 mg/ml) was comparable to that of aspirin (1.5 mg/ml). Furthermore, F-SC and S-SC showed very good platelet aggregation inhibitory activities. F-SC, S-SC, and P-SC did not show significant hemolysis against human red blood cell up to a concentration of 0.5 mg/ml. These results suggest that S-SC and P-SC, both of which are byproducts of the omija processing industry, show strong potential as novel antioxidant, antimicrobial, and antithrombosis agents.

Effects of Probiotic Complex on Performance, Blood Biochemical and Immune Parameters, Digestive Enzyme Activity, Fecal Microbial Population and Noxious Gas Emission in Broiler Chicks (복합생균제가 육계의 생산성, 혈액생화학성분과 면역지표, 소화효소 활성도, 분중 미생물 및 유해가스 발생에 미치는 영향)

  • Kim, Min-Jeong;Jeon, Dong-Gyung;Ahn, Ho-Sung;Yoon, Il-Gyu;Moon, Eun-Seo;Lee, Chai-Hyun;Lim, Yong;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.47 no.3
    • /
    • pp.169-180
    • /
    • 2020
  • This study examined the effects of a probiotic complex (PC) containing Lactobacillus plantarum, Bacillus subtilis, and Saccharomyces cerevisiae on growth performance, organ weight, immune parameters, fecal microbial count, and noxious odor in broiler chicks. A total of 216 birds (4-day-old) were fed a basal diet (CON) and a diet supplemented with 0.25% (PC1) and 0.5% (PC2) of PC until 35 days of age. No difference in body weight, feed intake, and FCR was observed among the groups. The intestinal mucosal weight of the PC1 group was greater than that of the CON group without affecting weights of the other organs. Intestinal secretory immunoglobulin A (sIgA) levels in the PC2 group increased significantly (P<0.05) compared with that in the CON group. The PC2 group also had a strong tendency for elevated blood sIgA levels. Dietary PC did not affect the level of interleukin-1β in the blood and mucosal tissues or alter maltase, sucrase, and leucine aminopeptidase activities in the intestinal mucosa. The PC2 group had higher colony-forming units (cfu) for L. plantarum and S. cerevisiae, but lower cfu for E. coli than those in the CON group. Compared to the CON diet, the PC2 diet resulted in a decreased H2S concentration and a tendency toward decreased CH3SH concentration. In conclusion, a 0.5% PC diet showed increased sIgA and desirable microbial population, and decreased noxious odor in the feces, suggesting that PC could be applied as an environmentally friendly feed additive in broiler chicks.

Effects of Powders of Soybean and Doenjang on Cholesterol Level and Antioxidant Activities in Rats Fed with a High Cholesterol Diet (대두와 된장분말이 고콜레스테롤식이를 급여한 흰쥐의 콜레스테롤 농도 및 항산화 활성에 미치는 영향)

  • Lee, Jae-Joon;Kim, Ah-Ra;Lee, Hwan;Kim, Cheol-Ho;Chang, Hae-Choon;Lee, Myung-Yul
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1134-1142
    • /
    • 2010
  • This study was carried out to investigate the effects of powders of autoclaved soy flour and doenjang fermented using Bacillus subtilis DJI on lipid profiles and antioxidative activities of rats fed a high cholesterol diet. Sprague-Dawley male rats weighing 200~210 g were divided into four groups: normal diet group (N), high cholesterol diet group (HC), autoclaved soy flour and high cholesterol diet group (SHC), and doenjang and high cholesterol diet group (DHC). The serum ALT, AST and ALP activities of the SHC and DHC groups were lower than those of the HC group, but exerted no significant change on serum LDH activity. Serum triglyceride, total cholesterol and LDL-cholesterol levels were markedly decreased by autoclaved soy flour and doenjang administration, while the serum HDL-cholesterol level was higher in groups given autoclaved soy flour and doenjang administration. The GSH-Px and catalase activities in liver elevated by a high cholesterol diet were significantly decreased by autoclaved soy flour and doenjang administration (p<0.05). Liver GSH levels of the SHC and DHC groups were significantly decreased compared to the HC group (p<0.05). Liver TBARS level was significantly decreased in the DHC group fed with doenjang powder compared with those of the HC group (p<0.05). These results suggest that soy flour and doenjang may reduce levels of serum cholesterol and prevent oxidative stress by stimulating antioxidative systems in rats fed a high cholesterol diet.

Effect of Soybeans, Chungkukjang, and Doenjang on Blood Glucose and Serum Lipid Profile in Streptozotocin-induced Diabetic Rats (대두, 청국장 및 된장 분말의 급여가 Streptozotocin 유발 당뇨쥐의 혈당 및 혈청지질 성상에 미치는 영향)

  • Kim, Ah-Ra;Lee, Jae-Joon;Cha, Sun-Sook;Chang, Hae-Choon;Lee, Myung-Yul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.5
    • /
    • pp.621-629
    • /
    • 2012
  • This study investigated the effect of soybeans, $chungkukjang$, and $doenjang$ on blood glucose and serum lipid profile in streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats weighing 205 g were divided into non-diabetic and diabetic groups. The diabetic groups were further subdivided into four experimental groups: a normal group (N), a diabetic control group (STZ-C), a diabetic group fed autoclaved soybean powder (STZ-S), a diabetic group fed $chungkukjang$ powder (STZ-CKJ) and a diabetic group fed $deonjang$ powder (STZ-DJ). Food and water intakes were higher in the diabetic groups than in the N group. The body weight gain and food efficiency ratios were higher in the STZ-S, STZ-CKJ, and STZ-DJ groups than in the STZ-C group, but created no significant changes between the diabetic groups on food intake and body weight gain. The whole blood level at 4 weeks of the STZ-CKJ group was significantly lower than the STZ-C group. Serum glucose levels of the STZ-S, STZ-CKJ, and STZ-DJ groups were significantly lower than the STZ-C group, but there was no significant change in serum insulin levels. The AST and ALP activities in serum were markedly higher in the STZ-C group, but these decreases in relation to diabetes increased in the STZ-S, STZ-CKJ, and STZ-DJ groups. The level of serum triglycerides was lower in the STZ-CKJ and STZ-DJ groups than in the STZ-C group, whereas level of serum HDL-cholesterol was higher in the STZ-CKJ and STZ-DJ groups. Levels of total serum and LDL-cholesterol were higher in the diabetic groups compared with the N group, but significantly decreased in the STZ-S, STZ-CKJ, and STZ-DJ groups compared to the STZ-C group. These results indicate that dietary supplements of soybean, $chungkukjang$ and $doenjang$ may improve blood glucose and lipid metabolism and help prevent or attenuate the progression of diabetes in STZ-induced diabetic rats.

Quality Characteristic of the Korean Wheat meju according to Milling Degree of Wheat and Fermenting Strains (밀의 도정 및 발효 균주에 따른 우리밀 메주의 품질특성)

  • Lee, Gyeong-Ran;Ko, Yu-Jin;Kim, Eun-Jung;Seol, Hui-Gyeong;Kim, Eun-Ja;Kim, Il-Hun;Shim, Ki-Hwan;Kim, Young-Gi;Ryu, Chung-Ho
    • Food Science and Preservation
    • /
    • v.19 no.6
    • /
    • pp.858-865
    • /
    • 2012
  • In this research, the soaking and steaming conditions of Korean wheat meju according to the degree of milling were investigated, and the quality characteristic was analyzed, for the manufacture of the standardized Korean wheat meju. As a result of the changes in weight, volume, moisture content, and moisture absorption amount, which indicate the physical properties of Korean wheat meju using 20% polished wheat, 50% polished wheat, whole wheat, and whole wheat flour, most of the wheat materials reached the equilibrium state after 4 hours of soaking. Also, the appropriate steaming time to complete the cooking of the wheat materials was found to be 10 min at $100^{\circ}C$, except for whole wheat. The 20 and 50% polished wheat materials were selected for Korean wheat meju based on the soaking and steaming results. The selected wheat materials were fermented using Aspergillus oryzae and Bacillus subtilis M1, respectively, and the quality properties and enzyme activities showed that A. oryzae would be effective for the manufacture of Korean wheat meju. Also, the 50% polished wheat showed higher total sugar content, reducing sugar content, and ${\alpha}$-amylase activity than the 20% polished wheat. Therefore, it is supposed that the fermentation of 50% polished wheat by A. oryzae would be appropriate for manufacturing superior Korean wheat meju.

Biological Control of Sesame Soil-born Disease by Antifungal Microorganisms (참깨 토양전염성병(土壤傳染性病)의 생물학적방제(生物學的防除))

  • Shin, G.C.;Im, G.J.;Yu, S.H.;Park, J.S.
    • Korean journal of applied entomology
    • /
    • v.26 no.4 s.73
    • /
    • pp.229-237
    • /
    • 1987
  • In order to study the biological control of soil-borne disease of sesame, antagonistic isolates of Trichoderma , Bacillus sand streptomyces to Fusarium oxysporum and Rhizoctonia solani were isolated from the rhizosphere soils of sesame plants and some other habitats. Out of the isolates of microorganisms collected a strain of Trichoderma viride was selected as a biological control agent for the study and its effect on the control of damping-off and the seedling growth of sesame was investigated. The results obtained are as follows: 26 percents of Bacillus spp. isolated from the rhizosphere soil of sesame plants showed antagonism to two pathogenic fungi. Important species were B. Subtilis and B. polymyxa. Streptomyces species isolated from the rhizosphere soils of sesame lysed the cell wall of hyphae and conidia of F. oxysporum and reduced conspicuously the formation of macroconidia and chlamydospores of the fungus. 84 percents of Trichoderma spp. isolated from the rhizosphere soil of sesame plants were antagonistic to F. oxysporum and 60 percents of the isolates were antagonistic to both F. oxysporum and R. solani. Trichoderma viride TV-192 selected from antagonistic isolates of Trichoderma spp. was highly antagonistic to F. oxysporum and soil treatment with the isolate reduced notably damping-off of sesame. T. viride TV-192 showed better growth in crushed rice straw, barley straw and sawdust media than F. oxysporum. Sawdust was selective for the growth of T. viride. Supplementation of wheat bran and mixtures of wheat bran and sawdust inoculated with T. viride TV-192 in the soil reduced remarkably damping-off of sesame by F. oxysporum but high density of the fungus TV-192 caused the inhibition of seed germination and seedling growth of sesame. Inhibitory effects of Trichoderma species on seed germination and seedling growth of sesame were different according to the isolates of the fungus. Normal sesame seedlings on the bed treated with the fungus showed better growth than not treated seedlings.

  • PDF

Dominant-species Variation of Soil Microbes by Temperate Change (온도변화에 기인한 토양미생물 우점종의 변화에 관한 연구)

  • Park, Kap-Joo;Lee, Byeong-Chol;Lee, Jae-Seok;Park, Chan-Sun;Cho, Myung-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.52-60
    • /
    • 2011
  • Today, the weather is changing continually, due to the progress of global warming. As the weather changes, the habitats of different organisms will change as well. It cannot be predicted whether or not the weather will change with each passing day. In particular, the biological distribution of the areas climate change affects constitutes a major factor in determining the natural state of indigenous plants; additionally, plants are constantly exposed to rhizospheric microorganisms, which are bound to be sensitive to these changes. Interest has grown in the relationship between plants and rhizopheric microorganisms. As a result of this interest we elected to research and experiment further. We researched the dominant changes that occur between plants and rhizospheric organisms due to global warming. First, we used temperature as a variable. We employed four different temperatures and four different sites: room temperature ($27^{\circ}C$), $+2^{\circ}C$, $+4^{\circ}C$, and $+6^{\circ}C$. The four different sites we used were populated by the following species: Pinus deniflora, Pinus koraiensis, Quercus acutissima, and Alnus japonica. We counted colonies of these plants and divided them. Then, using 16S rRNA analysis we identified the microorganisms. In conclusion, we identified the following genera, which were as follows: 10 species of Bacillus, 2 Enterobacter species, 4 Pseudomonas species, 1 Arthrobacter species, 1 Chryseobacterium species, and 1 Rhodococcus species. Among these genera, the dominant species in Pinus deniflora was discovered in the same genus, but a different species dominated at $33^{\circ}C$. Additionally, that of Pinus koraiensis changed in both genus and species which changed into the Chryseobacrterium genus from the Bacilus genus at $33^{\circ}C$.

Brief Introduction of Research Progresses in Control and Biocontrol of Clubroot Disease in China

  • He, Yueqiu;Wu, Yixin;He, Pengfei;Li, Xinyu
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.45-46
    • /
    • 2015
  • Clubroot disease of crucifers has occurred since 1957. It has spread to the whole China, especially in the southwest and nourtheast where it causes 30-80% loss in some fields. The disease has being expanded in the recent years as seeds are imported and the floating seedling system practices. For its effective control, the Ministry of Agriculture of China set up a program in 2010 and a research team led by Dr. Yueqiu HE, Yunnan Agricultural University. The team includes 20 main reseachers of 11 universities and 5 institutions. After 5 years, the team has made a lot of progresses in disease occurrence regulation, resources collection, resistance identification and breeding, biological agent exploration, formulation, chemicals evaluation, and control strategy. About 1200 collections of local and commercial crucifers were identified in the field and by artificiall inoculation in the laboratories, 10 resistant cultivars were breeded including 7 Chinese cabbages and 3 cabbages. More than 800 antagostic strains were isolated including bacteria, stretomyces and fungi. Around 100 chemicals were evaluated in the field and greenhouse based on its control effect, among them, 6 showed high control effect, especially fluazinam and cyazofamid could control about 80% the disease. However, fluzinam has negative effect on soil microbes. Clubroot disease could not be controlled by bioagents and chemicals once when the pathogen Plasmodiophora brassicae infected its hosts and set up the parasitic relationship. We found the earlier the pathogent infected its host, the severer the disease was. Therefore, early control was the most effective. For Chinese cabbage, all controlling measures should be taken in the early 30 days because the new infection could not cause severe symptom after 30 days of seeding. For example, a biocontrol agent, Bacillus subtilis Strain XF-1 could control the disease 70%-85% averagely when it mixed with seedling substrate and was drenching 3 times after transplanting, i.e. immediately, 7 days, 14 days. XF-1 has been deeply researched in control mechanisms, its genome, and development and application of biocontrol formulate. It could produce antagonistic protein, enzyme, antibiotics and IAA, which promoted rhizogenesis and growth. Its The genome was sequenced by Illumina/Solexa Genome Analyzer to assembled into 20 scaffolds then the gaps between scaffolds were filled by long fragment PCR amplification to obtain complet genmone with 4,061,186 bp in size. The whole genome was found to have 43.8% GC, 108 tandem repeats with an average of 2.65 copies and 84 transposons. The CDSs were predicted as 3,853 in which 112 CDSs were predicted to secondary metabolite biosynthesis, transport and catabolism. Among those, five NRPS/PKS giant gene clusters being responsible for the biosynthesis of polyketide (pksABCDEFHJLMNRS in size 72.9 kb), surfactin(srfABCD, 26.148 kb, bacilysin(bacABCDE 5.903 kb), bacillibactin(dhbABCEF, 11.774 kb) and fengycin(ppsABCDE, 37.799 kb) have high homolgous to fuction confirmed biosynthesis gene in other strain. Moreover, there are many of key regulatory genes for secondary metabolites from XF-1, such as comABPQKX Z, degQ, sfp, yczE, degU, ycxABCD and ywfG. were also predicted. Therefore, XF-1 has potential of biosynthesis for secondary metabolites surfactin, fengycin, bacillibactin, bacilysin and Bacillaene. Thirty two compounds were detected from cell extracts of XF-1 by MALDI-TOF-MS, including one Macrolactin (m/z 441.06), two fusaricidin (m/z 850.493 and 968.515), one circulocin (m/z 852.509), nine surfactin (m/z 1044.656~1102.652), five iturin (m/z 1096.631~1150.57) and forty fengycin (m/z 1449.79~1543.805). The top three compositions types (contening 56.67% of total extract) are surfactin, iturin and fengycin, in which the most abundant is the surfactin type composition 30.37% of total extract and in second place is the fengycin with 23.28% content with rich diversity of chemical structure, and the smallest one is the iturin with 3.02% content. Moreover, the same main compositions were detected in Bacillus sp.355 which is also a good effects biocontol bacterial for controlling the clubroot of crucifer. Wherefore those compounds surfactin, iturin and fengycin maybe the main active compositions of XF-1 against P. brassicae. Twenty one fengycin type compounds were evaluate by LC-ESI-MS/MS with antifungal activities, including fengycin A $C_{16{\sim}C19}$, fengycin B $C_{14{\sim}C17}$, fengycin C $C_{15{\sim}C18}$, fengycin D $C_{15{\sim}C18}$ and fengycin S $C_{15{\sim}C18}$. Furthermore, one novel compound was identified as Dehydroxyfengycin $C_{17}$ according its MS, 1D and 2D NMR spectral data, which molecular weight is 1488.8480 Da and formula $C_{75}H_{116}N_{12}O_{19}$. The fengycin type compounds (FTCPs $250{\mu}g/mL$) were used to treat the resting spores of P. brassicae ($10^7/mL$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A260) and at 280 nm (A280) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be lyzed by the FTCPs of XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol. In the five selected medium MOLP, PSA, LB, Landy and LD, the most suitable for growth of strain medium is MOLP, and the least for strains longevity is the Landy sucrose medium. However, the lipopeptide highest yield is in Landy sucrose medium. The lipopeptides in five medium were analyzed with HPLC, and the results showed that lipopeptides component were same, while their contents from B. subtilis XF-1 fermented in five medium were different. We found that it is the lipopeptides content but ingredients of XF-1 could be impacted by medium and lacking of nutrition seems promoting lipopeptides secretion from XF-1. The volatile components with inhibition fungal Cylindrocarpon spp. activity which were collect in sealed vesel were detected with metheds of HS-SPME-GC-MS in eight biocontrol Bacillus species and four positive mutant strains of XF-1 mutagenized with chemical mutagens, respectively. They have same main volatile components including pyrazine, aldehydes, oxazolidinone and sulfide which are composed of 91.62% in XF-1, in which, the most abundant is the pyrazine type composition with 47.03%, and in second place is the aldehydes with 23.84%, and the third place is oxazolidinone with 15.68%, and the smallest ones is the sulfide with 5.07%.

  • PDF