• Title/Summary/Keyword: B. cereus

Search Result 564, Processing Time 0.031 seconds

Biochemical property identification of 10 strains of Bacillus thuringiensis and 10 strains of Bacillus cereus (7 strains of non-emetic and 3 strains of emetic type) by API test

  • Hong, Yong-Gun;Lee, Jin-Joo;Kwon, Seung-Wook;Kim, Sang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.678-684
    • /
    • 2020
  • The objective of this study was to identify the fermentation characteristics of Bacillus thuringiensis and emetic, non-emetic Bacillus cereus using analytical profile index (API) test. Ten strains of B. thuringiensis and 10 strains of B. cereus including 3 strains of emetic type were used at the same concentrations. The differences of fermentation characteristics between the B. thuringiensis and B. cereus was not obvious, but the differences between the non-emetic and emetic B. cereus were distinctive. Seven among 50 substrates were negative for all non-emetic B. cereus strains and positive for all emetic strains, and three substrates among additional 12 substrates had the same tendency. From these differences, 3 emetic B. cereus strains were not indicated as B. cereus by API test. These results indicate that API test is not a suitable method to identify some strains of emetic B. cereus, and the distinctive differences in substrate utilization can be used to improve selective media.

Validation of Broth Model for Growth of Bacillus cereus in Blanched Vegetables (전처리 나물류에서 Bacillus cereus 성장 예측 모델 검증)

  • Jo, Hye-Jin;Hong, Soo-Hyun;Kim, Young-Gyo;Shin, Dan-Bi;Oh, Myung-Ha;Hwang, Jeong-Hee;Lkhagvasarnai, Enkhjargal;Yoon, Ki-Sun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.4
    • /
    • pp.558-565
    • /
    • 2012
  • The objective of this study was to develop a predictive growth model for Bacillus cereus in nutrient broth and validate the developed growth model in blanched vegetables. After inoculating B. cereus into nutrient broth, growth of B. cereus was investigated at 13, 17, 24, 30 and $35^{\circ}C$. Lag time (LT) decreased while specific growth rate (SGR) increased with an increase in storage temperature. Growth of B. cereus was not observed at temperatures lower than $12^{\circ}C$. Secondary growth models were developed to describe primary model parameters, including LT and SGR. Model performance was evaluated based on bias factor ($B_f$) and accuracy factor ($A_f$). In addition, we inoculated B. cereus into blanched vegetables stored at 13, 24, $35^{\circ}C$ and observed the growth kinetics of B. cereus in five different blanched vegetables. Growth of B. cereus was most delayed on Doraji at $13^{\circ}C$ and was not observed on Gosari at $13^{\circ}C$. Growth of B. cereus at $35^{\circ}C$ was significantly (p<0.05) slower on Gosari than on other blanched vegetables. The developed secondary LT model for broth in this study was suitable to predict growth of B. cereus on Doraji and Gosari, whereas the SGR model was only suitable for predicting the growth of B. cereus on mung bean sprout.

Studies on Bacterial Characteristics of Bacillus cereus Group LS-1 Isolated from Suyeong Bay (수영만에서 분리된 Bacillus cereus Group LS-1 의 세균학적 특성에 관한 연구)

  • 성희경;이원재;김용호;함건주
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.339-346
    • /
    • 1992
  • These studies were carried out to identify Bacillus cereus group 1..5-] strain isolated from 5uyeong Bay. This strain was differentiated from B. cereus group using conventional, API system and fatty acid composition analysis. Colony characteristics were opague. mucoid, entire margin. convex. circular and non hemolysis on sheep blood agar plates, and were observed with central spore forming positive bacilli in a Gram stained preparation. and had no motility. The carbohydrates tested; glucose.maltose, and sucrose were assimilated but neither trehalose nor salicin were assimilated. This strain ultilized gelatin and was also inhibited by 6.5% NaCI. The results of biochemical examination were differented from B. cereus group LS-1 compared with others B. cereus group. The fatty acid composition contained major amounts of branched chain acids. iso $C_{15}$ and iso $C_{13}$ and the range of chain length was $C_{12}$ to C"$C_{17}$ and n$C_{15}$, acid was not detected. Automated fatty acid computer profile indicated "B. mycoides GC subgroup B of 0.312 similarity index." The results agreed with other research cases. On the other hand. A TB computer prolile index of API system (API 50 CHB & API 20E) identified" Doubtful profile of 99.7% B. firmus" . These results were presented with considerable discrepancies between API system and fatty acid analysis. With 67 biochemical characters. the similarity matrix of B. mycaides (KCTC 1033). B. thuringiensis (KCTC 1033). B. cereus (5-3) and B. mycoides (S-12) showed 42%. 42%. 59%, and 52%. respectively. Through the key tests and fatty acid analyses. we could notice the appearance of B. mycoides of the B. cereus group and this leads us to suspect the existence of a new biotype B. mycoides.

  • PDF

Simultaneous Detection and Identification of Bacillus cereus Group Bacteria Using Multiplex PCR

  • Park, Si-Hong;Kim, Hyun-Joong;Kim, Jae-Hwan;Kim, Tae-Woon;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1177-1182
    • /
    • 2007
  • Bacillus cereus group bacteria share a significant degree of genetic similarity. Thus, to differentiate and identify the Bacillus cereus group efficiently, a multiplex PCR method using the gyrB and groEL genes as diagnostic markers is suggested for simultaneous detection. The assay yielded a 400 bp amplicon for the groEL gene from all the B. cereus group bacteria, and a 253 bp amplicon from B. anthracis, 475 bp amplicon from B. cereus, 299 bp amplicon from B. thuringiensis, and 604 bp amplicon from B. mycoides for the gyrB gene. No nonspecific amplicons were observed with the DNA from 29 other pathogenic bacteria. The specificity and sensitivity of the B. cereus group identification using this multiplex PCR assay were evaluated with different kinds of food samples. In conclusion, the proposed multiplex PCR is a reliable, simple, rapid, and efficient method for the simultaneous identification of B. cereus group bacteria from food samples in a single tube.

Antibacterial Activity of Caesalpinia sappan and Coptis chinensis Extracts against Bacillus cereus and Vibrio parahaemolyticus (소목(蘇木)과 황련(黃連) 추출물(抽出物)의 Bacillus cereus와 Vibrio parahaemolyticus 에 대한 항세균활성(抗細菌活性))

  • Lee, Gun-Hee;Doh, Eun-Soo;Chang, Jun-Pok;Kil, Gi-Jung
    • The Korea Journal of Herbology
    • /
    • v.25 no.3
    • /
    • pp.111-116
    • /
    • 2010
  • Objectives : This experimental study was performed to investigate the antibacterial effect of Caesalpinia sappan and Coptis chinensis extract against B. cereus and V. parahaemolyticus. Methods : Methanol extracts of C. sappan and C. chinensis was tested against B. cereus and V. parahaemolyticus by paper disc method. Results : The growth of B. cereus and V. parahaemolyticus was inhibited by C. sappan and C. chinensis extract among 6 kinds of medicinal plant extracts. The extract of C. sappan and C. chinensis extract inhibited the growth of V. parahaemolyticus and B. cereus, respectively. The growth of B. cereus and V. parahaemolyticus had a tendency to increase depend on the concentration of the extract. EtOEt and EtOAc fractions and EtOEt and BuOH fractions of the C. sappan extract had a high antibacterial activity against B. cereus and V. parahaemolyticus, respectively. And, BuOH and $H_2O$ fractions of the C. chinensis extract showed antibacterial activity against B. cereus highly. Conclusions : C. sappan and C. chinensis extract efficiently inhibited the growth of B. cereus and V. parahaemolyticus.

Molecular Epidemiology of Bacillus cereus in a Pediatric Cancer Center (소아 암 환자에서 발생한 Bacillus cereus 균혈증의 분자역학 분석에 관한 연구)

  • Kim, Jong Min;Park, Ki-Sup;Lee, Byung-Kee;Kim, Soo Jin;Kang, Ji-Man;Kim, Yanghyun;Yoo, Keon Hee;Sung, Ki Woong;Koo, Hong Hoe;Lee, Nam Yong;Kim, Yae-Jean
    • Pediatric Infection and Vaccine
    • /
    • v.23 no.3
    • /
    • pp.172-179
    • /
    • 2016
  • Purpose: Bacillus cereus has been reported as the cause of nosocomial infections in cancer patients. In our pediatric cancer ward, a sudden rise in the number of patients with B. cereus bacteremia was observed in 2013 to 2014. This study was performed to investigate the molecular epidemiology of increased B. cereus bacteremia cases in our center. Methods: Pediatric cancer patients who developed B. cereus bacteremia were identified from January 2001 to June 2014. The B. cereus bacteremia in this study was defined as a case in which at least one B. cereus identified in blood cultures, regardless of true bacteremia. Available isolates were further tested by multilocus sequence typing (MLST) analysis. A retrospective chart review was performed. Results: Nineteen patients developed B. cereus bacteremia during the study period. However, in 2013, a sudden increase in the number of patients with B. cereus bacteremia was observed. In addition, three patients developed B. cereus bacteremia within 1 week in July and the other three patients within 1 week in October, respectively, during emergency room renovation. However, MLST analysis revealed different sequence types without consistent patterns. Before 2013, five tested isolates were ST18, ST26, ST177, and ST147-like type, and ST219-like type. Isolates from 2013 were ST18, ST73, ST90, ST427, ST784, ST34-like type, and ST130-like type. Conclusions: MLST analyses showed variable ST distribution of B. cereus isolates. Based on this study, there was no significant evidence suggesting a true outbreak caused by a single ST among patients who developed B. cereus bacteremia.

Growth Profile and Toxigenicity of Bacillus cereus in Ready-to-eat Food Products of Animal Origin

  • Oh, Mi-Hwa;Ham, Jun-Sang;Seol, Kuk-Hwan;Jang, Ae-Ra;Lee, Seung-Gyu;Lee, Jong-Moon;Park, Beom-Young;Kang, Eun-Sil;Kwon, Ki-Sung;Hwang, In-Gyun
    • Food Science of Animal Resources
    • /
    • v.31 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • The growth profile of Bacillus cereus in ready-to-eat (RTE) food products of animal origin was examined under different temperature and incubation conditions. In sandwiches and Kimbab, B. cereus did not grow or exhibited only minimal growth at 4 and $10^{\circ}C$, but it grew rapidly at ambient temperature. In sandwiches, B. cereus did not grow efficiently at $25^{\circ}C$, however, in ham, the main ingredient of sandwiches, B. cereus growth was observed at the same temperature, with bacterial levels reaching 7.94 Log CFU/g after incubation for 24 h at $25^{\circ}C$. Toxigenicity of B. cereus was observed only at temperatures above $25^{\circ}C$. In Kimbab, B. cereus produced toxin after 9 h at $30^{\circ}C$ and after 12 h at $25^{\circ}C$. Ingredients of sandwiches and Kimbab were collected from 3 different Korean food-processing companies to investigate the source of contamination by B. cereus. Among the 13 tested food items, 6 items including ham were found to be contaminated with B. cereus. Of these ingredients, B. cereus isolates from 3 items produced enterotoxins. None of these isolates harbored the emetic toxin-producing gene. The findings of the present study can be used for risk assessments of food products, including ham and cheese, contaminated with B. cereus.

Bacterial Community of Traditional Doenjang in Longevity Area and Antagonistic Effect against Bacillus cereus (장수지역 전통된장의 미생물 군집 및 바실러스 세레우스 길항 효과)

  • Jeon, Doo-Young;Yoon, Gi-Bok;Yoon, Yeon-Hee;Yang, Soo-In;Kim, Jung-Beom
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.1035-1040
    • /
    • 2016
  • This study investigated the prevalence of foodborne pathogens and the bacterial community of traditional Doenjang collected from a longevity area in Korea as well as the antagonistic effect of traditional Doenjang isolates against Bacillus cereus to estimate the microbiological safety of traditional Doenjang. Aerobic bacteria showed $10^6{\sim}10^9CFU/g$, whereas coliform bacteria was not detected. Foodborne pathogens were not detected except B. cereus, which was detected in seven samples out of 10 Doenjang samples. A total of 327 isolates were identified from traditional Doenjang. The isolates consisted of Bacillus subtilis 155 (47.4%), Bacillus licheniformis 68 (20.8%), Bacillus amyloliquefaciens 46 (14.1%), and Bacillus pumilus 18 (5.5%). Antagonistic effect against B. cereus was detected in 20 (6.1%) of 327 isolates, which consisted of B. subtilis (12 strains), B. amyloliquefaciens (5 strains), and B. licheniformis (3 strains). The inhibitory zone for the antagonistic effect was 9.0~12.0 mm in diameter. Although a small amount of traditional Doenjang was tested in this study, these results indicated that the potential risk of B. cereus in traditional Doenjang is lower than generally presumed. It is necessary to monitor the antagonistic effect of traditional Doenjang isolates against B. cereus.

Toxicity of 5 Bacillus cereus Enterotoxins in Human Cell Lines and Mice

  • Lee, No-A;Chang, Hak-Gil;Kim, Hyun-Pyo;Kim, Hyun-Su;Park, Jong-Hyun
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.458-461
    • /
    • 2006
  • To determine whether the toxicity of Bacillus cereus would be seen in human cell lines and mice, we screened B. cereus B-38B, B. cereus B-50B, and B. cereus KCCM40935 for genes that coded for 5 enterotoxins using the polymerase chain reaction and cultivated them for 17 hr, by whose time they had grown to $10^7-10^8$ colony-forming units (CFU) per milliliter. Cell-free supernatant was added to make up 1% of the total reaction solution. Human cells from normal lung, lung carcinoma, embryonic kidney, and cervical adenocarcinoma cell lines were grown in culture. The cytotoxicity induced by adding the reaction solution was indicated by cell death rates of 0 to 70%, depending on the bacterial strain involved and the cell line. A lethality of 20% was observed when B. cereus cultures containing $10^7-10^8$ viable cells were administrated orally to mice. Therefore, the culture of B. cereus containing $10^7-10^8$ viable cells seems to have high cytotoxicity on human cell lines and lethality on mice.

Identification of Food-Poisoning Bacteria (Bacillus cereus) and the Bacterial Toxin Genes for Application to Forensic Microbiology : A Case Report from National Forensic Service (법미생물 검사를 위한 식중독 세균(Bacillus cereus)의 동정 및 독소 유전자 검사법: 국립과학수사연구원 사례보고)

  • Cho, Yoonjung;Lee, Min Ho;Kim, Hyo Sook;Eom, Kiyoon;Kim, Min-Hee;Kim, Jong-Bae;Lee, Dong Sub
    • Journal of Science Criminal Investigation
    • /
    • v.11 no.3
    • /
    • pp.210-217
    • /
    • 2017
  • In the forensic microbiology laboratories, microorganism analyses from food are requested. There have been several cases of Bacillus cereus isolated from the samples requested to the National Forensic Service. B. cereus is an important pathogenic bacterium which can cause food-borne outbreaks. Therefore, we isolated B. cereus from anchovy aekjeot recently requested for microbial examination and identified using MSId based on the 16S rDNA sequence and real-time PCR method. We also conducted PCR for detection of diarrheal toxin genes and an emetic toxin gene and found the presence of nheABC, bceT and entFM diarrheal toxin genes in the B. cereus isolate. There are several clinically important food-poisoning bacteria that should be noted during inspection. In particular, B. cereus can cause food poisoning even when cooked foods are ingested, because B. cereus forms endo-spore which confers strong environmental resistance and heat resistance to the bacteria, and the bacterial emetic toxin also has heat resistance. Here we highlight the importance to distinguish clinically important bacteria such as B. cereus from food specimens, and we expect this study will provide procedures for identification of B. cereus and detection of the bacterial toxin genes for future cases in the forensic microbiology laboratories.