• Title/Summary/Keyword: B. cepacia

Search Result 47, Processing Time 0.028 seconds

A case of lung abscess caused by Burkholderia cepacia in healthy child (건강한 소아에서 발생한 B. cepacia에 의한 폐농양 1례)

  • Lee, Jung Hwa;Lee, So Hee;Hong, Seong Jin;Choi, Young Chil;Hwang, Eun Gu
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.1
    • /
    • pp.89-92
    • /
    • 2007
  • Burkholderia cepacia is a Gram-negative aerobic bacillus known to cause opportunistic infections in the immune-compromised hosts. This microorganism is strongly virulent and causes a necrotising invasive infection that may lead to death. As B. cepacia is highly resistant to various antimicrobials, combination antimicrobial therapy must be used instead of monotherapy. We report a successful treatment of lung abscess that was naturally caused by B. cepacia in a healthy child, through combination antimicrobial therapy of meropenem and trimethoprim/sulfamethoxazole and operative management.

Biodegradation Characteristics of Poly(butylene succinate-co-butylene adipate) during Soil Burial Test (토양 매립 시험에서 Poly(butylene succinate-co-butylene adipate)의 생분해 특성)

  • Kim, Mal-Nam
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.3
    • /
    • pp.150-157
    • /
    • 2010
  • Biodegradation behavior of poly(butylene succinate-co-butylene adipate) (PBSA) was examined when PBSA was buried in the natural soil and the soil inoculated with Burkholderia cepacia after sterilization. After 80 days of the soil burial test at room temperature, the PBSA film buried in the natural soil lost 34.0% of its intial weight, while the same film lost 59.2% of its initial weight when buried in the sterile soil inoculated with B. cepacia. The optical and SEM observations of the surface morphology of the PBSA film also indicated that the surface erosion and rupture took place faster when the film was buried in the sterile soil inoculated with B. cepacia compared to the film buried in the natural soil. Viable cell number in the natural soil and that the sterile soil inoculated with B. cepacia increased by a factor of 6~7 and 10~14, respectively as compared to the initial viable cell number.

Characteristics and Antimicrobial Effects of Novel Burkholderia cepacia No. 15-2 Isolated from Compost (퇴비로부터 분리된 Burkholderia cepacia No.15-2의 특성과 항균 효과)

  • Yun, Soon-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.421-428
    • /
    • 2003
  • To develop the functional-compost containing antifungal substance by using antagonistic microorganisms, Spinacia oleracea L and Rhizoctonia solani Kuhn O-28 were used as a model plant and phytopathogen, respectively. Total 80 strains were isolated from the compost of various waste foods mixture processed for a year. Among them, No.15-2 strain was selected due to its highest antifungal activity against R. solani Kuhn O-28 and was identified phyno- and phylogenotypically as Burkholderia cepacia genomovar V. which is rare probability in pathogen, by 16S rDNA sequencing and specific primer pair PCR method. B. cepacia No.15-2 preferentially dominated during the compost and its cell numbers were maintained almost $${\times}$10^{13}$ cuf/g for 15 days. The morbidity caused by R. solani Kuhn O-28 in S. oleracea L cultivation was reduced to 40% by addition of B. cepacia No.15-2. In conclusion, the antifungal compost using B. cepacia No.15-2 could be applied to biocontrol of various crops blights caused by fungal pathogen.

Enhancing the Efficacy of Burkholderia cepacia B23 with Calcium Chloride and Chitosan to Control Anthracnose of Papaya During Storage

  • Rahman, M.A.;Mahmud, T.M.M.;Kadir, J.;Rahman, R. Abdul;Begum, M.M.
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.361-368
    • /
    • 2009
  • The efficacy of the combination of Burkholderia cepacia B23 with 0.75% chitosan and 3% calcium chloride ($CaCl_2$) as a biocontrol treatment of anthracnose disease of papaya caused by Colletotrichum gloeosporioides, was evaluated during storage. The growth of B. cepacia B23 in papaya wounds and on fruit surfaces was not affected in presence of chitosan and $CaCl_2$ or combination throughout the storage period. The combination of B. cepacia B23 with chitosan-$CaCl_2$ was more effective in controlling the disease than either B. cepacia B23 or chitosan or other combination treatments both in inoculated and naturally infected fruits. Combining B. cepacia B23 with chitosan-$CaCl_2$ gave the complete control of anthracnose infection in artificially inoculated fruits stored at $14^{\circ}C$ and 95% RH for 18 days, which was similar to that obtained with fungicide $benocide^{(R)}$. Moreover, this combination offered a greater control by reducing 99% disease severity in naturally infected fruits at the end of 14 days storage at $14^{\circ}C$ and 95% RH and six days post ripening at $28\pm2^{\circ}C$, which was superior to that found with $benocide^{(R)}$ or other treatments tested. Thus, postharvest application of B. cepacia B23 with chitosan-$CaCl_2$ as enhancers represents a promising alternative to synthetic fungicides for the control of anthracnose in papaya during storage.

Synergistic Antimicrobial Action of Thymol and Sodium Bisulfate against Burkholderia cepacia and Xanthomonas maltophilia Isolated from the Space Shuttle Water System

  • Kim, Du-Woon;Day, Donal F.
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.321-323
    • /
    • 2006
  • A combination of thymol and sodium bisulfate was found to be an effective biocidal agent against strains of Burkholderia cepacia and of Xanthomonas maltophilia that were found in the space shuttle water system. Potassium iodide (KI), the biocidal agent used in the past, had a minimum inhibitory concentration (MIC) of 50,000 ppm against the two B. cepacia (541 STS-81 and 1119 STS-91) strains, whereas that of thymol and sodium bisulfate was 2,400 and 950 ppm, which was 21 and 53 times lower than that of KI for B. cepacia, respectively. The MIC value for the combination of thymol and sodium bisulfate was 4 times lower than that for thymol or sodium bisulfate alone against B. cepacia (541 STS-81, 1119 STS-91) or Pseudomonas cepacia (ATCC 31941). The fractional inhibitory concentration (FIC) of the combination of thymol and sodium bisulfate for all organisms tested was less than 0.5, indicating a strong synergistic effect.

Flagellin Administration Protects Respiratory Tract from Burkholderia cepacia Infection

  • Zgair, Ayaid Khadem
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.907-916
    • /
    • 2012
  • Burkholderia cepacia is an important pathogen that often causes pneumonia in immunocompromised individuals. Here, it was demonstrated that the TLR5 agonist flagellin could locally activate innate immunity. This was characterized by rapid expressions of IL-$1{\beta}$, TNF-${\alpha}$, and iNOS mRNA and a delay in the expression of IL-10 mRNA. A significant elevation in the IL-$1{\beta}$, TNF-${\alpha}$, and nitric oxide levels was also noted. In the respiratory tract, flagellin induced neutrophil infiltration into the airways, which was observed by histopathological examination and confirmed by the neutrophil count and level of myeloperoxidase activity. This was concomitant with a high activity of alveolar macrophages that engulfed and killed B. cepacia in vitro. The flagellin mucosal treatment improved the B. cepacia clearance in the mouse lung. Thus, the present findings illustrate the profound stimulatory effect of flagellin on the lung mucosal innate immunity, a response that needs to be exploited therapeutically to prevent the development of respiratory tract infection by B. cepacia.

Burkholderia Cepacia Causing Nosocomial Urinary Tract Infection in Children

  • Lee, Ki Wuk;Lee, Sang Taek;Cho, Heeyeon
    • Childhood Kidney Diseases
    • /
    • v.19 no.2
    • /
    • pp.143-147
    • /
    • 2015
  • Purpose: Burkholderia cepacia is an aerobic, glucose-non-fermenting, gram-negative bacillus that mainly affects immunocompromised and hospitalized patients. Burkholderia cepacia has high levels of resistance to many antimicrobial agents, and therapeutic options are limited. The authors sought to analyze the incidence, clinical manifestation, risk factors, antimicrobial sensitivity and outcomes of B. cepacia urinary tract infection (UTI) in pediatric patients. Methods: Pediatric patients with urine culture-proven B. cepacia UTI between January 2000 and December 2014 at Samsung Medical Center, a tertiary referral hospital in Seoul, Republic of Korea, were included in a retrospective analysis of medical records. Results: Over 14 years, 14 patients (male-to-female ratio of 1:1) were diagnosed with B. cepacia UTI. Of 14 patients with UTI, 11 patients were admitted to the intensive care unit, and a bladder catheter was present in 9 patients when urine culture was positive for B. cepacia. Patients had multiple predisposing factors for UTI, including double-J catheter insertion (14.2%), vesico-ureteral reflux (28.6%), congenital heart disease (28.6%), or malignancy (21.4%). Burkholderia cepacia isolates were sensitive to piperacillin-tazobactam and sulfamethoxazole-trimethoprim, and resistant to amikacin and colistin. Treatment with parenteral or oral antimicrobial agents including piperacillin-tazobactam, ceftazidime, meropenem, and sulfamethoxazole-trimethoprim resulted in complete recovery from UTI. Conclusion: Burkholderia cepacia may be a causative pathogen for nosocomial UTI in pediatric patients with predisposing factors, and appropriate selection of antimicrobial therapy is necessary because of high levels of resistance to empirical therapy, including aminoglycosides.

Isolation and Characterization of Burkholderia cepacia strain YJK2, Antagonistic Microorganism of Paprika Pathogens (파프리카 병원균들에 대한 길항미생물, Burkholderia cepacia strain YJK2의 분리 및 특성)

  • Yang, Soo-Jeong;Kim, Hyung-Moo;Ju, Ho-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.1
    • /
    • pp.133-148
    • /
    • 2015
  • Although several adverse effects have been increased in recent years, synthetic agro-chemicals have been widely used to control diseases on paprika. This research was conducted to isolate and to characterize the antagonistic microorganism to control major paprika diseases, gray mold rot, fruit and stem rot, phytophthora blight, sclerotium rot, and wilt disease. Analysis of the fatty acid and analysis of the 16S rDNA gene sequence revealed that YKJ2 isolated in this research belongs to a group of Burkholderia cepacia. Specially, 16S rDNA gene sequence of YKJ2 showed 99% of sequence similarity with B. cepacia. Observation through the optical microscope revealed that YKJ2 was effective on suppression of the spore germination and the hyphal growth of pathogens. YKJ2 treatment on pathogens induced marked morphological changes like hyphal swelling and degradation of cell wall. In the case of phytophthora blight, the zoosporangium formation was restrained. On the basis of the results of this study, we propose that an antagonistic microorganism, B. cepacia, found in this study naming as "B. cepacia strain YKJ2" and has great potential as one of biological control agents against major diseases of paprika.

Cloning and Expression of Pseudomonas cepacia catB Gene in Pseudomonas putida

  • Song, Seung-Yeon;Jung, Young-Hee;Lee, Myeong-Sok;Lee, Ki-Sung;Kim, Young-Soo;Kim, Chi-Kyung;Choi, Sang-Ho;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.334-340
    • /
    • 1996
  • The enzyme, cis,cis-muconate lactonizing enzyme has been proposed to play a key role in the $\beta$-ketoadipate pathway of benzoate degradation. A 3.2-kb EcoRI fragment termed as pRSU2, isolated from a Pseudomonas cepacia genomic library was able to complement the catB defective mutant. Several relevant restriction enzyme sites were determined within the cloned fragment. In Pseudomonas putida SUC2 carrying pRSU2, the enzyme activity was relatively higher than those of the induced or partially induced state of wild type P. putida PRS2000. It was probably due to higher expression of P. cepacia catB in P. putida PRS2000. It was probably due to higher expression of P. cepacia catB in P. putida. One possible interpretation of these results is that the catB promoter in P. cepacia is recognized within P. putida, resulting in the almost same expression level.

  • PDF

Production of Stress Shock Proteins DnaK and GroEL in Burkholderia cepacia YK-2 by Phenoxyherbicide 2,4-Dichlorophenoxyacetic Acid as an Environmental Contaminant (Burkholderia cepacia YK-2에서 페녹시계 제초제 2,4-Dichlorophenoxyacetic Acid에 의한 스트레스 충격 단백질 DnaK와 GroEL의 생성)

  • Cho, Yun-Seok;Park, Sang-Ho;Kim, Chy-Kyung;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.270-276
    • /
    • 1999
  • Production of stress shock proteins in Burkholderia cepacia YK-2 in response to the phenoxyherbicide 2,4-dichlorophenoxyacetic acid(2,4-D) as an environmental contaminant was investrigated. The stress schock proteins were synthesized at different 2,4-D concentrations in exponentially growing cultures of B. capacia YK-2. This response involved the production of 43kDa and 41kDa GroEL proteins. The proteins were characterized by SDS-PAGE and Western blot using the anti-DnaK nad anti-GroEL monoclonal antibodies. Total stress shock proteins were analyzed by 2-D PAGE. Survival of B. cepacia YK-2 with time in the presence of different concentrations of 2,4-D was monitored, and viable counts paralleled the production of the stress shock proteins in this bacterium.

  • PDF