• Title/Summary/Keyword: B-operator

Search Result 617, Processing Time 0.029 seconds

HYPERCYCLICITY OF WEIGHTED COMPOSITION OPERATORS ON THE UNIT BALL OF ℂN

  • Chen, Ren-Yu;Zhou, Ze-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.969-984
    • /
    • 2011
  • This paper discusses the hypercyclicity of weighted composition operators acting on the space of holomorphic functions on the open unit ball $B_N$ of $\mathbb{C}^N$. Several analytic properties of linear fractional self-maps of $B_N$ are given. According to these properties, a few necessary conditions for a weighted composition operator to be hypercyclic in the space of holomorphic functions are proved. Besides, the hypercyclicity of adjoint of weighted composition operators are studied in this paper.

A BERBERIAN TYPE EXTENSION OF FUGLEDE-PUTNAM THEOREM FOR QUASI-CLASS A OPERATORS

  • Kim, In Hyoun;Jeon, In Ho
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.583-587
    • /
    • 2008
  • Let $\mathfrak{L(H)}$ denote the algebra of bounded linear operators on a separable infinite dimensional complex Hilbert space $\mathfrak{H}$. We say that $T{\in}\mathfrak{L(H)}$ is a quasi-class A operator if $$T^*{\mid}T^2{\mid}T{{\geq}}T^*{\mid}T{\mid}^2T$$. In this paper we prove that if A and B are quasi-class A operators, and $B^*$ is invertible, then for a Hilbert-Schmidt operator X $$AX=XB\;implies\;A^*X=XB^*$$.

  • PDF

The Development of Graphic Display and Operator Console System for Monitoring the Operation of Power Plant (발전소 운전 감시용 그래픽 디스플례이 및 오퍼레이터 console 시스템의 개발)

  • Cho, Y.J.;Moon, B.C.;Kim, B.K.;Youn, M.J.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.216-220
    • /
    • 1987
  • A graphic display and operator console system is developed for monitoring the operation of power plant. It has multiprocessor structure using VME bus and common memory. The graphic monitoring system is applied to fault tolerant control system for enhancing reliability of boiler analog controller. As a result, it displays all the operating date as color graphic images with 14 pages. Moreover, it can transfer the operator commands to the other micro-processors through common memory.

  • PDF

UPPER TRIANGULAR OPERATORS WITH SVEP

  • Duggal, Bhagwati Prashad
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.235-246
    • /
    • 2010
  • A Banach space operator A $\in$ B(X) is polaroid if the isolated points of the spectrum of A are poles of the resolvent of A; A is hereditarily polaroid, A $\in$ ($\mathcal{H}\mathcal{P}$), if every part of A is polaroid. Let $X^n\;=\;\oplus^n_{t=i}X_i$, where $X_i$ are Banach spaces, and let A denote the class of upper triangular operators A = $(A_{ij})_{1{\leq}i,j{\leq}n$, $A_{ij}\;{\in}\;B(X_j,X_i)$ and $A_{ij}$ = 0 for i > j. We prove that operators A $\in$ A such that $A_{ii}$ for all $1{\leq}i{\leq}n$, and $A^*$ have the single-valued extension property have spectral properties remarkably close to those of Jordan operators of order n and n-normal operators. Operators A $\in$ A such that $A_{ii}$ $\in$ ($\mathcal{H}\mathcal{P}$) for all $1{\leq}i{\leq}n$ are polaroid and have SVEP; hence they satisfy Weyl's theorem. Furthermore, A+R satisfies Browder's theorem for all upper triangular operators R, such that $\oplus^n_{i=1}R_{ii}$ is a Riesz operator, which commutes with A.

MULTIPLIERS FOR OPERATOR-VALUED BESSEL SEQUENCES AND GENERALIZED HILBERT-SCHMIDT CLASSES

  • KRISHNA, K. MAHESH;JOHNSON, P. SAM;MOHAPATRA, R.N.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.153-171
    • /
    • 2022
  • In 1960, Schatten studied operators of the form $\sum_{n=1}^{{\infty}}\;{\lambda}_n(x_n{\otimes}{\bar{y_n}})$, where {xn}n and {yn}n are orthonormal sequences in a Hilbert space, and {λn}n ∈ ℓ(ℕ). Balazs generalized some of the results of Schatten in 2007. In this paper, we further generalize results of Balazs by studying the operators of the form $\sum_{n=1}^{{\infty}}\;{\lambda}_n(A^*_nx_n{\otimes}{\bar{B^*_ny_n}})$, where {An}n and {Bn}n are operator-valued Bessel sequences, {xn}n and {yn}n are sequences in the Hilbert space such that {║xn║║yn║}n ∈ ℓ(ℕ). We also generalize the class of Hilbert-Schmidt operators studied by Balazs.

Iterative Algorithm for a New System of Variational Inclusions with B-monotone Operators in Banach Spaces

  • Lee, Sang Keun;Jeong, Jae Ug
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.307-318
    • /
    • 2013
  • In this paper, we introduce and study a new system of variational inclusions with B-monotone operators in Banach spaces. By using the proximal mapping associated with B-monotone operator, we construct a new iterative algorithm for approximating the solution of this system of variational inclusions. We also prove the existence of solutions and the convergence of the sequences generated by the algorithm for this system of variational inclusions. The results presented in this paper extend and improve some known results in the literature.

Development of Smart CAD/CAM System for Machining Center Based on B-Rep Solid Modeling Techniques (I) (A Study on the B-Rep Solid Modeler using Half Edge Data Structure) (B-Rep 솔리드모델을 이용한 머시닝 센터용 CAC/CAM 시스템 개발(1): 반모서리 자료구조의 B-Rep 솔리드모델러에 관한 연구)

  • 양희구;김석일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.689-694
    • /
    • 1994
  • In this paper, to develop a smart CAD/CAM system for systematically performing from the 3-D solid shape design of products to the CNC cutting operation of products by a machining center, a B-Rep solid modeler is realized based on the half edge data structure. Because the B-Rep solid modeler has the various capabilities related to the solid definition functions such as the creation operation of primitives and the translational and rotational sweep operation, the solid manipulation functions such as the split operation and the Boolean set operation, and the solid inversion function for effectively using the data structure, the 3-D solid shape of products can be easily designed and constructed. Also, besides the automatic generation of CNC code, the B-Rep solid modeler can be used as a powerful tool for realizing the automatic generation of finite elements, the interference check between solids, the structural design of machine tools and robots and so on.

  • PDF

CONVERGENCE AND ALMOST STABILITY OF ISHIKAWA ITERATION METHOD WITH ERRORS FOR STRICTLY HEMI-CONTRACTIVE OPERATORS IN BANACH SPACES

  • Liu, Zeqing;Ume, Jeong-Sheok;Kang, Shin-Min
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.293-308
    • /
    • 2004
  • Let K be a nonempty convex subset of an arbitrary Banach space X and $T\;:\;K\;{\rightarrow}\;K$ be a uniformly continuous strictly hemi-contractive operator with bounded range. We prove that certain Ishikawa iteration scheme with errors both converges strongly to a unique fixed point of T and is almost T-stable on K. We also establish similar convergence and almost stability results for strictly hemi-contractive operator $T\;:\;K\;{\rightarrow}\;K$, where K is a nonempty convex subset of arbitrary uniformly smooth Banach space X. The convergence results presented in this paper extend, improve and unify the corresponding results in Chang [1], Chang, Cho, Lee & Kang [2], Chidume [3, 4, 5, 6, 7, 8], Chidume & Osilike [9, 10, 11, 12], Liu [19], Schu [25], Tan & Xu [26], Xu [28], Zhou [29], Zhou & Jia [30] and others.

  • PDF

Lp ESTIMATES FOR SCHRÖDINGER TYPE OPERATORS ON THE HEISENBERG GROUP

  • Yu, Liu
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.425-443
    • /
    • 2010
  • We investigate the Schr$\ddot{o}$dinger type operator $H_2\;=\;(-\Delta_{\mathbb{H}^n})^2+V^2$ on the Heisenberg group $\mathbb{H}^n$, where $\Delta_{\mathbb{H}^n}$ is the sublaplacian and the nonnegative potential V belongs to the reverse H$\ddot{o}$lder class $B_q$ for $q\geq\frac{Q}{2}$, where Q is the homogeneous dimension of $\mathbb{H}^n$. We shall establish the estimates of the fundamental solution for the operator $H_2$ and obtain the $L^p$ estimates for the operator $\nabla^4_{\mathbb{H}^n}H^{-1}_2$, where $\nabla_{\mathbb{H}^n}$ is the gradient operator on $\mathbb{H}^n$.

q-FREQUENT HYPERCYCLICITY IN AN ALGEBRA OF OPERATORS

  • Heo, Jaeseong;Kim, Eunsang;Kim, Seong Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.443-454
    • /
    • 2017
  • We study a notion of q-frequent hypercyclicity of linear maps between the Banach algebras consisting of operators on a separable infinite dimensional Banach space. We derive a sufficient condition for a linear map to be q-frequently hypercyclic in the strong operator topology. Some properties are investigated regarding q-frequently hypercyclic subspaces as shown in [5], [6] and [7]. Finally, we study q-frequent hypercyclicity of tensor products and direct sums of operators.